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a  b  s  t  r  a  c  t

The  most  basic  stochastic  epidemic  models  are  those  involving  global  transmission,  meaning  that  infec-
tion  rates  depend  only  on  the  type and state  of  the  individuals  involved,  and  not  on their location  in  the
population.  Simple  as  they  are,  there  are  still  several  open  problems  for such  models.  For  example,  when
will such  an  epidemic  go  extinct  and  with what  probability  (questions  depending  on  the  population  being
fixed,  changing  or growing)?  How  can a  model  be  defined  explaining  the  sometimes  observed  scenario
of  frequent  mid-sized  epidemic  outbreaks?  How  can  evolution  of  the  infectious  agent  transmission  rates
be  modelled  and  fitted  to  data  in  a  robust  way?

©  2014  The  Authors.  Published  by  Elsevier  B.V. This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction and classification

Epidemic processes are essentially stochastic, but stochastic
epidemic models have not had a straightforward history. That
epidemics proceed by chance contacts with individuals was under-
stood from the earliest days of modelling, but early modelling
developments were deterministic. The development of stochas-
tic models, from the 1950s onward (e.g. Bailey, 1950; Bartlett,
1956), was in parallel with developments in techniques, starting
with models that dealt in total numbers of infecteds, suscepti-
bles, etc. Individual-based models came in first to deal with spatial
populations (1970s), with subsequent developments related to
computer methodology (simulations, inference) and network the-
ory.

Stochastic models can conveniently be classified according to
whether their contact structure is global, network, metapopulation
or spatial. Given the many other aspects of disease to be modelled,
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there is good reason to model contact structure as simply as possi-
ble. Models with too many parameters cannot usefully be fitted: as
Euler is reputed to have said, ‘Give me  four parameters and I will
draw you an elephant, five and I will have him wave his trunk’.

The simplest contact structure is no structure, often referred to
as either global or homogeneous mixing (Mollison, 1995). Individ-
uals’ probabilities of interaction do not depend on their location
in the population, such as their social group or spatial location.
Global models can incorporate individual heterogeneity, for exam-
ple by having different rates of infection for individuals of different
age, sex, or infection history. Numerous examples of (determinis-
tic) global models, over the range of diseases important to humans,
can be found in Anderson and May  (1992).

Network epidemic models (Pellis et al., in this volume) are more
difficult to define. Any individual-based epidemic model can be
thought of as a network or random graph: with individuals as nodes,
and infection of one by another as a link. The question is rather
whether network theory can be usefully applied. In recent years
network models have been notably successful in analysing mod-
els where individuals vary greatly in their number of contacts (the
degree distribution of the underlying graph).
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Metapopulation models (Ball et al., in this volume) deal with
cases where interactions do depend on social group. The basic case
is where the population is partitioned into non-overlapping groups,
e.g. households; individuals have one contact rate with individuals
in different groups, and another (higher) rate for individuals in the
same group. More general metapopulation models allow an indi-
vidual to belong to several different types of group, each with its
own contact rate, or allow more levels of mixing.

Spatial models (Riley et al., in this volume) vary from sim-
ple lattices with only nearest–neighbour interactions, for which
some theoretical analysis is possible, to complex models with long-
distance interactions, for which only qualitative and approximate
results are known. A key feature of spatial models is that they dis-
play slower than exponential growth, even in their earliest stage;
this makes it difficult to approximate them adequately by deter-
ministic models, and even to define threshold parameters.

As a simple example to illustrate these different types of model,
consider a disease among two type of individual, male and female.
In each case consider a simple Markov process SIR, in which infected
individuals (I) have an exponentially distributed infectious period
before being removed (R), during which they may  infect suscepti-
bles (S) as follows. First, suppose that the infection rates between
any (I,S) pair depends only on the types of the individuals involved
(perhaps individuals can only infect others of the opposite sex, and
perhaps the rates from male to female and female to male are dif-
ferent); this is a global model. Second, suppose the individuals live
distributed between a number of different villages, and that the
rates of infection have two levels, with higher infection rates if the
(I,S) pair live in the same village, lower if they live in different vil-
lages; this is a metapopulation model. Third, suppose instead that
the individuals live in a line of houses equally spaced along a street,
and that the infection rate between I and S depends on the distance
between the houses they live in (normally one would take this to
be a decreasing function of distance); this is a spatial model. Finally,
in any of these populations, suppose that we think of individuals as
vertices of a graph, with edges of the graph connecting pairs that
have some kind of social relationship; and then take rates of infec-
tion between connected individuals that only depend on their type;
this is a network model. Note that all the other three examples can
be considered as network models, if we draw edges between all
pairs of individuals (everyone knows everyone”), and add depend-
ence of infection rates on village or distance as appropriate.

We  are now ready to state our first challenge, namely: is this
classification into global, network, metapopulation and spatial
models sufficient for the range of contact structures of interest in
understanding infectious disease dynamics?

The focus of the present paper is global stochastic epidemic
models, where any (infectious) individual may  infect any other
(susceptible) individual at a transmission rate that may  differ
between different pairs of individuals, but should be of the same
order 1/N (or 0), where N is the population size. The simplest model
assumption is where all transmission rates are identical, which is
called a homogeneously mixing population of homogeneous indi-
viduals, but one may  also assume different mixing rates and/or
that individuals are of different types with respect to susceptibility
and/or infectivity. As we shall see in this section, there are sev-
eral open problems also for global epidemic models (only having
transmission on a global scale). In real world epidemics there is of
course nearly always some local structure within which transmis-
sion is much higher. Still, results for global epidemic models have
undoubtedly been most influential in affecting health policies, and
for highly transmittable diseases global mixing is often a reasonable
approximation.

Having specified identical transmission rates (between all pairs
of individuals) does not define the model uniquely. Other aspects
to consider in formulating a stochastic model include.

Type of epidemic model. An SI model is where Susceptibles may
become infected and infectious, and if they do, they remain infec-
tious forever. In an SIR model, individuals that are infectious (from
now on denoted Infectives) eventually recover from the disease and
become immune for the rest of their lives (measles and chicken-pox
being two examples). An SIS model is where infectives, rather than
recovering and becoming immune they recover and enter the sus-
ceptible state again. SEIS models admit that there is a latent (E for
exposed) state where an individual has already been infected but
where he or she has not yet started to shed virus or bacteria. Other
examples, hopefully self-explanatory, are SEIR, SIRS, SEIRS, . . .

Treatment of time. Is the time evolution of the epidemic of
interest or only the end/final state of an outbreak? Is discrete or
continuous time more appropriate? Do all rates/probabilities obey
the practical Markov property (that future events only depend on
present states and not the history, meaning that all underlying dis-
tributions are exponentials), or are durations not all exponentially
distributed?

Population. Are we  considering a fixed and finite population of
size N, or a population having births and deaths but fluctuating ran-
domly around N, or even a growing population? If the time-frame
of interest is short, then a fixed population model might suffice,
whereas if interest is on longer periods, a dynamic population is
more realistic, thus allowing for influx of new individuals. If the
population size fluctuates randomly around N it will eventually die
out with probability 1 (and the disease will go extinct before this
happens) so questions of interest then relate to population-disease
properties prior to extinction (quasi-endemic) and the length of
time to extinction of the disease. Alternatively, if the population
grows, then it may  happen that the disease will remain present in
the population for ever (endemic situation).

Fluctuations over time. Do all event rates stay the same over time
except for the numbers “at risk”? The simplest models answer this
question with a yes, but there are situations where this is clearly
not the case, for example when the infectious agent evolves on the
same time scale as the epidemic outbreak, and/or because individ-
uals start taking precautions as more and more people are struck
by the disease. A (perhaps simpler) fluctuation over time is where
individuals and/or transmission rates change over time for reasons
other than the epidemic itself. Examples include seasonality due to
school term and school closure, but also varying transmission rates
due to changes in temperature.

These type of questions are dealt with in the remainder of the
current paper, and several challenges for these type of models are
listed.

2. Endemicity: persistence of infection

Bartlett’s seminal paper (Bartlett, 1956) highlighted a severe
inadequacy of deterministic models in describing the persistence
of infection in an SIR (or similar) process with demography: fluc-
tuations in the prevalence of infection about the endemic level can
often be large enough for transmission to be interrupted by stochas-
tic fade-out. Using a stochastic linearization approach, Bartlett
estimated the magnitude of these fluctuations and characterizing
the critical community size required for the persistence of such
infections (most notably, for measles). This approach, later formal-
ized in terms of an Ornstein–Uhlenbeck process, provides the basis
of later work that derives approximations for the time to extinction
when starting at the endemic (quasi-)equilibrium (e.g. Nåsell, 1999,
and others). Improved approximations can be obtained using large
deviation theory (e.g. Kamenev and Meerson, 2008).

The question of endemic persistence is most pointed for a
newly-introduced infection given that the initial epidemic is the
most severe. While it is well known how to compute the probability
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