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a b s t r a c t

Infectious disease incidence data are increasingly available at the level of the individual and include high-
resolution spatial components. Therefore, we are now better able to challenge models that explicitly
represent space. Here, we consider five topics within spatial disease dynamics: the construction of net-
work models; characterising threshold behaviour; modelling long-distance interactions; the appropriate
scale for interventions; and the representation of population heterogeneity.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

Introduction

There have been many important ecological and public health
questions related to the transmission of infectious disease that nei-
ther need, nor would benefit from, a mechanistic model in which
space is represented explicitly. In many instances, the concept of
the average behaviour of a large population is sufficient to provide
genuinely useful insight and to extract good information from the
data that are available.

However, the importance of the spatial component of many
transmission systems is being increasingly recognised. When there
is a need to consider spatially heterogeneous interventions, it is
clearly essential to represent the location of hosts and the pattern of
transmission. Sometimes the location of the hosts in space is clearly
defined and easily measured – such as for plant systems and some
livestock systems. However, for humans and wild animals, the sin-
gle location assigned to a host represents the best average from the
complex social behaviour of each individual.

If it is thought that the aggregate characteristics of epidemic
incidence are being driven by spatial aspects of transmission (such

∗ Corresponding author. Tel.: +44 207 594 2452.
E-mail address: s.riley@imperial.ac.uk (S. Riley).

as waves), it is difficult to investigate data from these systems
with models that do not represent space in some way. Also, and
perhaps most importantly for future modelling work, where data
are provided with high spatial resolution, even when the primary
hypotheses of interest for a given phenomenon does not relate
directly to spatial effects, it is often necessary to account for spatial
processes in order to discount plausible alternate explanations for
an observed feature in the data.

Mechanistic spatial models are usually described as being; an
individual-based simulation, a metapopulation model or a network
model. Individual-based models explicitly represent every indi-
vidual host within a simulation algorithm and usually assume a
highly variable – but non-zero – probability that any infectious
host can infect any susceptible host. Metapopulation models do
not represent individuals. Rather, they keep track of the number of
individuals at different locations who are in each state of the nat-
ural history. Often, they also assume that each location (patch) is
connected to all others, but, again, with highly variable strengths
of connection. Network models typically define each node to be an
individual host and assume that each host is connected to only a
small subset of other hosts. Also, usually, the strengths of connec-
tion along each arc in a network epidemic model are assumed to
be equal.

Here we consider five broad challenges for theoretical infectious
disease dynamics.
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1. How can network models best be constructed to reflect
spatial population structure?

The three types of spatial model outlined above do not form
disjoint sets. We can think of the network formulation as a
potential unifying framework within which the other two can
be nested. Individual-based simulations are very dense fully con-
nected networks with highly variable edge weights. Similarly,
metapopulation models become network models as the average
number of individuals represented in each patch approaches 1.
Therefore, given that it has proven difficult to obtain analytical
results for metapopulation models and individual-based simula-
tions, it may be possible to make more analytical progress in our
ability to describe complex spatial phenomena by basing analysis
on network formulations that mimic these other model structures.

There is a long history of using regular lattices as a basis for infec-
tion spread (Mollison and Kuulasmaa, 1985), often in the context
of plant populations. Random geometric graphs (Penrose, 2003)
provide another, less highly structured, way to represent a spa-
tial process by a simple graph. They are constructed by starting
from a spatial Poisson point process, which need not necessarily be
homogeneous. Pairs of points (nodes) that are within some criti-
cal distance are connected by an edge to form a graph, after which
the underlying spatial structure is ignored. The conditional inde-
pendence properties of Poisson processes mean that the analytic
properties of such graphs are well understood. When they form the
underlying contact structure for epidemic processes (Isham et al.,
2011), random geometric graphs provide a nice way of escaping
the lack of local correlation and clustering that are implicit prop-
erties of the configuration graphs often used to explore epidemic
dynamics.

The spatial construction of the random geometric graph leads
naturally to the question of how transmission is affected when
the hosts move in space, so that edges are continuously bro-
ken and created. This scenario has direct application to computer
viruses spreading on wifi computer/phone networks (e.g. Rhodes
and Nekovee, 2008). In other applications, it may be appropriate to
model the creation and annihilation of nodes and edges. Network
dynamics is discussed in section “How do we define a threshold
parameter for spatial models?” of the chapter on Networks (this
volume).

In most metapopulation and network models, the group or net-
work structure of the host population is fixed. The actual contacts
between hosts in which transmission takes place are not explic-
itly represented; implicitly one might imagine some local spatial
movement that brings the two hosts in contact. In contrast, in an
alternative modelling approach, hosts move between a set of dis-
crete spatial locations that form the nodes of a graph, and infection
is only possible between hosts in the same location. Thus, in a sim-
ple model, hosts might perform independent random walks on the
graph (Draief and Ganesh, 2011; Abdullah et al., 2011).

Work is needed to develop other network models that reflect
spatial structure and, when that network is not fully connected,
to explore how well the properties of an epidemic running on the
network approximate the full spatial dynamics.

2. How should we model contact structure in spatially
heterogeneous populations?

Human populations are never distributed uniformly in space.
Hence, the movement of people to achieve their daily tasks in
life is driven strongly by the distribution of population density
around them. In rural areas, people must travel further on aver-
age to shop compared with urban areas; while they may travel
less far to socialise. The movement of hosts is clearly an important

feature of spatially explicit infectious disease models (Riley, 2007).
It is also an important aspect of human behaviour for the study of
other social phenomena: urbanisation, disaster planning, transport
planning, and many others. There has been considerable interest in
developing parsimonious models of human movement in recent
years in order to support these different studies (González et al.,
2008; Wang et al., 2009; Simini et al., 2012).

Most quantitative descriptions of human movement are based
on the concept of a gravity model: that the flux of individuals from
area dA1 to area dA2 is proportional to the product of the popu-
lations of the two areas n1 and n2 and inversely proportional to
the distance between them r1, raised to some power (Viboud et al.,
2006). If the analogy with Newtonian gravity is direct, movement
between areas is assumed to be proportional to n1n2/r2. With only
minor refinements, for some systems, this formulation describes
observations extremely well. For example, the number of people
travelling between Germany and 28 other European cities by air
can be well estimated with simple gravity-based models (Grosche
et al., 2007).

However, spatial models of infectious disease are often defined
for an individual (as well as for linked metapopulations). Therefore
flux models must be refined so as to be consistent with simulated
infections between individuals. This is usually achieved by assum-
ing that the infectious contacts of individuals are determined by a
mobility kernel: the probability that an individual at location r1 will
make contact with an individual at location r2. The kernel itself can
be defined only up to a constant of proportionality, with the number
of infection events determined by a separate parameter (Riley and
Ferguson, 2006). Effectively, individual mobility becomes relative
to available opportunities.

The discovery of flexible and accurate movement models is a
current challenge for infectious disease dynamics, with high inter-
est in the recently proposed radiation flux model. In the radiation
model, the degree of flow between two populations is driven by
their population sizes, the distance between them and also by the
total number of people who live the same distance away from
each population (or closer) (Simini et al., 2012). Thus, the inter-
vening population absorbs journeys in the same way that radiation
is absorbed as it passes through a media. Although the radiation
model as currently proposed has no free parameters and is attrac-
tive in its simplicity, it is not yet clear to what degree previously
proposed gravity-like mobility kernels can achieve similar or better
fits to observed patterns by estimating two or three key parameters.

One obvious way forward is for the underlying movement
assumptions of spatial models of infectious disease to be compared
using spatially resolved social contact data (Read et al., 2014).

3. How do we define a threshold parameter for spatial
models?

The basic reproductive number R0 is most commonly under-
stood to be the average number of infections generated by one
infectious individual in an otherwise susceptible population. There-
fore, for simple non-spatial homogeneous mixing models, the
critical or threshold value of a straightforward R0 parameter is
unity: that is, when R0 ≤ 1, the expected outbreak size is small;
when R0 > 1, there is a significant probability of a large outbreak.

Where the population includes individuals of different infec-
tious types, a more sophisticated approach defines R0 as the largest
eigenvalue �* of the next generation operator for those types
(Diekmann and Heesterbeek, 2000; Heesterbeek, 2001). This is
appropriate for most non-spatial models, for which branching pro-
cess approximations can be applied (Ball, 1983; Davis et al., 2008),
showing that early growth is exponential, with the nth genera-
tion of infectives ∝ �n∗ , and with infectious numbers of each type in
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