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a  b  s  t  r  a  c  t

Public  health-related  decision-making  on policies  aimed  at controlling  epidemics  is  increasingly
evidence-based,  exploiting  multiple  sources  of data. Policy  makers  rely  on  complex  models  that  are
required  to be robust,  realistically  approximating  epidemics  and consistent  with  all  relevant  data.  Meet-
ing these  requirements  in  a statistically  rigorous  and  defendable  manner  poses  a  number  of  challenging
problems.  How  to weight  evidence  from  different  datasets  and handle  dependence  between  them,  effi-
ciently  estimate  and  critically  assess  complex  models  are  key  challenges  that  we expound  in  this  paper,
using  examples  from  influenza  modelling.

© 2014  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/3.0/).

Introduction

Increasingly, there is a perceived need to exploit information
from multiple sources in epidemic modelling, ensuring decision-
making on public health policies geared to control epidemics is
progressively based on as many diverse sources of information
as possible (Rutherford et al., 2010) and the use of models (e.g.
https://www.gov.uk/government/policy-advisory-groups/joint-
committee-on-vaccination-and-immunisation). Policy makers
want ‘defendable’ models that not only realistically approximate
the phenomenon of interest, but are also, crucially, able to produce
outputs consistent with all relevant available data (Rolka et al.,
2007; Lipsitch et al., 2011). This requirement, supported by the
continued progress in computational power, has encouraged the
development of increasingly complex models, which, in turn,
require rich arrays of data to guarantee parameter identifiability
(Ferguson et al., 2006).

In addition, irrespective of the complexity of the model, mod-
ellers are often faced with the task of integrating information from
many heterogeneous sources of data. For example, the behaviour
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of an epidemic in its early stages is described by the parameter R0,
the basic reproductive number. However, equally crucial for the
containment of an infectious disease outbreak (Fraser et al., 2004;
Powers et al., 2011) is knowledge of the proportion of transmission
occurring before the onset of symptoms, �. Population incidence
data contain information on R0, but are uninformative about �.
Complementary evidence from ‘challenge’ studies, where the time
between infection and symptom onset is measured directly and
information is available on the distributions of latent and infectious
periods, are needed to estimate �. A comprehensive description of
the evolution of an outbreak can only be obtained using data from
multiple sources.

It is, however, not typically the case that there will be a sin-
gle data source directly informing each relevant parameter. More
realistically, there will be a collection of datasets, each of different
quality, that will need to be appropriately synthesised to derive the
estimates of interest, as illustrated in Fig. 1. Here the epidemic pro-
cess is modelled in terms of the basic parameters of interest, � = {�1,
. . .,  �k} and the information from each data source xj, j = 1, . . .,  n, is
expressed as a function of the basic parameters i.e. �∗

j = fj(�). The
form of this function, whether deterministic or stochastic, defines
the relationship of the observation model to the epidemic model.
Examples of fj(�) include cases where a data source provides:
direct information on a single parameter of interest (i.e. �∗

j
= �i);

biased evidence on � (see Section “Model criticism”); simultaneous
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Fig. 1. Schematic diagram of how multiple data sources can link into an epidemic model via an observation model(s).

information on multiple components of � or on further nuisance
parameters � (i.e. �∗

j = fj(�, �)).
Estimation involves a flow backwards from the combined infor-

mation to �. Carrying out such inference in a principled manner
is not straightforward and poses a number of challenges stem-
ming from the multiplicity and the limitations in the available data
sources. We  illustrate the main ones below using mainly examples
from recent literature on influenza, pointing out relevant ideas from
the statistical literature that could be explored to address these
challenges. Although, in principle, this type of synthesis can be car-
ried out via maximum likelihood methods (e.g. Commenges and
Hejblum, 2013), we mainly concentrate on a Bayesian approach as
it represents a very natural approach to data assimilation both from
a principled and computational point of view.

1. How should evidence be weighted?

When a multiplicity of data is used, the various sources of evi-
dence will inevitably be of different quality and a natural question
is whether and how to account for this diversity in the model (Ypma
et al., 2012). Clearly the first challenge is to define ‘quality’. Here
‘quality’ relates to both measurement error and bias. One immedi-
ate solution to the heterogeneity of quality would be to exclude
the lower quality data with, however, a resulting loss of infor-
mation and risk of introducing biases due to the selective nature
of information retained (Turner et al., 2009). Alternatively, a few
ways of weighting data can be explored, each posing its own chal-
lenges.

The most natural approach is through an appropriate choice of
distributional assumption for each data item. For example, when
analysing count data, contrast the use of a negative binomial likeli-
hood with the Poisson, as was employed in two of the transmission
models developed to estimate the evolution of the 2009 A/H1N1
influenza pandemic (Birrell et al., 2011; Dorigatti et al., 2012).
Dorigatti et al. (2012), in particular, demonstrate the sensitivity
of estimates of R0 to the assumption of over-dispersion in the
data. Furthermore, even within a specific distributional form, the
degree to which error variance is modelled can have an impact
upon the relative importance of each data component. This aspect
of weighting of information is very closely linked to Section “Model
criticism”, as the correct assumption can be examined through
methods for model choice.

A further approach is to recognise and model explicitly the lim-
itations in the data, in particular in relation to bias (e.g. see recent
criticism of Google ‘Flu Trends by Olson et al., 2013). The obser-
vational model can be expanded to include additional parameters

formally expressing such limitations. Magnitude and direction of
the likely bias are incorporated through a suitable choice of a prior
distribution for a bias parameter (Turner et al., 2009). This distribu-
tion ideally should be informative, at least in terms of the direction
of the bias, to prevent the new parameter from absorbing all the
unexplained variability, without offering any specific explanation
for the nature of the bias. However, much remains to be done in
terms of bias modelling, in particular in relation to self-reported
data or data collected through particular channels, such as the
Internet.

The concept of power priors (Chen and Ibrahim, 2000) rep-
resents an additional interesting avenue to be explored in the
problem of weighting evidence. The principle comes from the world
of clinical trials and has been proposed as an approach to incor-
porate data from a previous trial as an input to the analysis of a
current study. The same concept could be applied to concurrent
data sources, and the choice of appropriate values for the weighting
scheme would be driven by expert opinion on the validity of each
source or, perhaps, estimated, although this is still controversial
(Neuenschwander et al., 2009).

General recommendations for the best strategy for the weight-
ing of information do not exist, but formal thinking on how to
approach such weighting of data should be encouraged as it is a
choice to which modelling outcomes are rarely robust.

2. Handling dependence between datasets

In most cases where a multiplicity of datasets are used to
inform a model, there will be some degree of dependency between
them. Given a model, the important distinction is between datasets
that are conditionally independent and those that are condition-
ally dependent. In the directed acyclic graph (Lauritzen, 1996) in
Fig. 1, the datasets xj, j = 1, . . .,  n are independent, conditional on
the model parameters �, where the independence is represented
by the lack of links between the xjs. This conditional indepen-
dence is a common model assumption in many examples (e.g.
Rasmussen et al., 2011; Strelioff et al., 2013). However, there might
be situations in which the independence assumption is not ten-
able. An example of such data can be found in the surveillance of
the 2009 influenza pandemic in the UK. Two  transmission mod-
els (Birrell et al., 2011; Dorigatti et al., 2013) used, amongst other
data sources, data on individuals consulting general practitioners
(GPs) for influenza-like-illness (ILI). An additional relevant data
source was the National Pandemic ’Flu Service (NPFS) (Evans et al.,
2011), an internet and telephone service for the recording of self-
reported symptoms and anti-viral distribution. It is possible that
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