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The field of phylodynamics, which attempts to enhance our understanding of infectious disease dynamics
using pathogen phylogenies, has made great strides in the past decade. Basic epidemiological and evo-
lutionary models are now well characterized with inferential frameworks in place. However, significant
challenges remain in extending phylodynamic inference to more complex systems. These challenges
include accounting for evolutionary complexities such as changing mutation rates, selection, reas-
sortment, and recombination, as well as epidemiological complexities such as stochastic population
dynamics, host population structure, and different patterns at the within-host and between-host scales.
An additional challenge exists in making efficient inferences from an ever increasing corpus of sequence
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Introduction

‘Phylodynamics’ is a term used to describe the ‘melding of
immunodynamics, epidemiology, and evolutionary biology’ in
order to understand how infectious diseases are transmitted and
evolve (Grenfell et al., 2004). Since the term was coined ten years
ago, many studies have taken up this concept, driven by the
increasing availability of pathogen sequence data. Publicly avail-
able software such as BEAST (Drummond and Rambaut, 2007) has
enabled individuals to apply complex evolutionary models to these
data. New conceptual models (Volz et al., 2009, 2012; Frost and
Volz, 2010; Rasmussen et al., 2011; Stadler et al., 2012; Dearlove
and Wilson, 2013) have added to our understanding of how the pro-
cess of disease transmission may shape a phylogeny, and of how the
population genetics concept of ‘effective population size’ relates to
pathogens. Here we present open challenges in using sequence data
to infer disease dynamics.
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1. How can we account for sequence sampling patterns?

While there are a vast amount of publicly-available sequence
data - currently there are over one million viral sequences in Gen-
Bank - sampling is often highly biased. Sampling may be biased
towards trying to capture a diverse taxonomic sample or may be
biased by sampling a restricted geographic area, impacting esti-
mates of effective population size (Holmes et al., 1999). Sampling
effects may also be important when studying the ‘phylogeography’
of a pathogen. Some widely used phylogeographic models treat the
migration of a pathogen as though it were analogous to mutation
(Kihnert et al., 2011), mainly for computational expediency. How-
ever, spatial oversampling of specific areas may lead to these areas
becoming apparent ‘sinks’, where overrepresentation of a deme
causes estimates of migration into that deme to increase.

Previous work on the impact of temporal sampling has demon-
strated that sampling protocols designed to capture sequences
at specific points in the epidemic cycle result in more accurate
inference using coalescent models (Stack et al, 2010). Current
birth-death models used for phylodynamic inference assume a con-
stant probability of sampling throughout the evolutionary history,
which may result in biased estimates of quantities such as the
effective population size when the sampling process is misspeci-
fied. Formal investigations of the potentially confounding effects
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of both spatial and temporal non-random sampling, and how they
may be ameliorated, are well overdue. In order to make the best
use of currently available data, methods would strongly benefit
from recalibrating samples based on surveillance information; the
development of realistic models of the sampling process could in
theory increase statistical power while reducing bias.

2. How can more realistic evolutionary models be used to
improve phylodynamic inferences?

For rapidly evolving pathogens, a range of sampling times can be
used to calibrate a ‘molecular clock’ to estimate divergence times
on a phylogenetic tree. Despite ‘relaxed’ clocks that can capture
some degree of variation in evolutionary rates (Drummond et al.,
2006), current models may fall short of capturing true variation.
For example, Wertheim et al. (2012) analysed major subtypes of
pandemic HIV-1 group M, which are thought to exemplify closely
related lineages with different substitution rates, and found that
the times to the most recent common ancestor differed markedly
when subtypes were analysed separately compared to jointly. This
suggests that current models fail to capture higher-order tempo-
ral correlations in the evolutionary rate. However, recent work on
influenza by Worobey et al. (2014) found that incorporating out-
side information, in this case host species, substantially improved
temporal calibration.

In addition, most studies do not consider how the epidemio-
logical dynamics may feed back to the pattern of evolution. For
pathogens such as influenza A, mutations that induce antigenic
change and allow escape from the predominating herd immunity
are likely to spread. This results in phylogenies that depart strongly
from the neutral coalescent expectation, showing increased asym-
metry in branching topology and skewed patterns of coalescence
(Bedford et al., 2011). Analytically tractable coalescent models that
directly incorporate such selection pressures do not currently exist.
Recent progress has been made applying non-Kingman coalescent
processes, such as the Bolthausen-Sznitman coalescent, to capture
some of the broad effects of selection on phylogenetic shape and
scale (Neher and Hallatschek, 2013). However, even with such coa-
lescent models, there will remain the assumption that the observed
phylogeny is independent of the substitution process. This is prob-
lematic as a major goal is to link viral mutations to evolutionary out-
comes, and identify strains that may have a competitive advantage.

3. What is the role of stochastic effects in phylodynamics?

The vast majority of phylodynamic studies assume a time-
varying coalescent model (Pybus and Rambaut, 2009; Volz et al.,
2013) that specifies that changes at the population level are deter-
ministic, which have demonstrated a variety of dynamic patterns
for different viral systems (Table 1 in Frost and Volz (2010)).
Demographic stochasticity may play a central role in infections
that exhibit recurrent epidemics, such as influenza A virus and
norovirus, due to seasonal troughs in incidence. However, even
infections that are now endemic in many populations, such as HIV-1
and hepatitis C virus, were once at low frequency, and also sporadi-
cally appear in new populations. Hence, stochastic effects may play
a role close to the time of the most recent common ancestor for
many pathogens. Stochastic effects due to demography may also
be important when the number of infected individuals is relatively
small and/or infection and recovery rates are high.

Several recent studies have employed a stochastic linear
birth-death process, where birth corresponds to transmission,
and death to either recovery or death of infected individuals
(Stadler et al., 2012). However, these models assume constant
rates, and hence may be inappropriate if infection is not spreading

exponentially. Extensions to the basic birth—-death model, such as
the birth-death skyline (Stadler et al., 2013), which involves fit-
ting a piecewise constant birth-death process, may help to capture
varying infection rates. However, fitting a stochastic, nonlinear
model of disease transmission may be preferable to such non-
parametric approaches, as it may offer mechanistic insights. One
approach to incorporate stochasticity in such models is to apply the
coalescent to an ensemble of stochastic simulations, an approach
taken by Rasmussen et al. (2011), who fitted a stochastic dif-
ferential equation model jointly to epidemiological data and to
coalescence events inferred from a phylogenetic tree. Another pos-
sible approach to allow use of the coalescent likelihood would be
to perform a stochastic change in timescale (Kaj and Krone, 2003).
Kiithnert et al. (2014) fitted a stochastic epidemiological model
by simulating epidemiological trajectories, which were used to
parameterise a stochastic birth-death process with piecewise con-
stant rates. One can take inspiration from developments in fitting
stochastic epidemic models to incomplete data. Leventhal et al.
(2014) fitted a stochastic model using numerical approximation to
the solution of the underlying master equation, in order to inte-
grate out the (unknown) number of transmission events in the
population that occur between coalescent intervals in the sample.
Environmental stochasticity, which is important in the dynam-
ics of many vector-borne diseases, has received relatively little
attention in the phylodynamics literature to date. Recent develop-
ments in fitting models that can accommodate both stochasticity
(via stochastic differential equations, a common framework for
including environmental stochasticity) (Rasmussen et al., 2011)
and structure (Rasmussen et al., 2014) are encouraging, and await
wider availability of sequence data on vector-borne pathogens.

4. How does the structure of the host population relate to
pathogen genetic variation?

There has been recent progress in understanding how classi-
cal compartmental epidemiological models, which can incorporate
population structure by considering multiple classes of individual,
relate to the resulting pathogen phylogeny (Stadler et al., 2012;
Volz et al., 2012; Volz, 2012; Frost and Volz, 2013). These mod-
els may be more robust to biased sampling of specific groups than
models that consider population structure as a trait that evolves
independently of the underlying phylogeny (Lemey et al., 2009).
Including population structure may be essential for accurate infer-
ence, as recently demonstrated by Rasmussen et al. (2014a), who
showed that a panmictic epidemiological model failed to capture
the classical oscillatory dynamics of dengue virus, while splitting
the hosts into separate but linked urban and rural populations was
sufficient to recapitulate observed oscillations in hospital admis-
sions with dengue. Phylogeographic models have also been applied
to consider host species jumps in multiple host systems such as
rabies Streicker et al. (2010), although there are issues with sparse
sampling of such systems, and the potential for stochastic effects
(Buhnerkempe et al., 2014; Lloyd-Smith et al., 2014).

However, compartmental models may not fully capture het-
erogeneity in contacts and transmissions among individuals. A
high variance among hosts in onward transmission — sometimes
termed super-spreading - is characteristic of many infectious dis-
eases (Lloyd-Smith et al., 2005), and this may impact the phylogeny
(Leventhal et al., 2012). There are many challenges in developing
network models that aim to capture deviations from the ‘well-
mixed pot’ assumption of many compartmental epidemiological
models (Pellis et al., 2014), and more challenging still to include
such structure into phylodynamic models. This relates to the wider
challenge of incorporating individual-level variation, rather than
aggregating individuals into groups.
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