
Epidemics 16 (2016) 17–26

Contents lists available at ScienceDirect

Epidemics

j ourna l ho me  pa ge: www.elsev ier .com/ locate /ep idemics

Information  content  of  household-stratified  epidemics

T.M.  Kinyanjuia,∗,  L.  Pellisb,  T.  Housea,b

a School of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
b Warwick Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 19 August 2015
Received in revised form 15 February 2016
Accepted 25 March 2016
Available online 26 March 2016

Keywords:
Households model
Study design
Data collection
Parameter estimation

a  b  s  t  r  a  c  t

Household  structure  is a key  driver  of  many  infectious  diseases,  as well  as a natural  target  for  interven-
tions  such  as  vaccination  programs.  Many  theoretical  and  conceptual  advances  on  household-stratified
epidemic  models  are  relatively  recent,  but  have  successfully  managed  to increase  the  applicability  of  such
models to  practical  problems.  To be of  maximum  realism  and  hence  benefit,  they  require  parameterisa-
tion  from  epidemiological  data,  and  while  household-stratified  final  size  data has  been  the  traditional
source,  increasingly  time-series  infection  data from  households  are  becoming  available.  This  paper  is
concerned  with  the design  of  studies  aimed  at collecting  time-series  epidemic  data  in  order  to  maximize
the  amount  of information  available  to calibrate  household  models.  A design  decision  involves  a trade-off
between  the  number  of  households  to enrol  and  the sampling  frequency.  Two  commonly  used  epidemi-
ological  study  designs  are  considered:  cross-sectional,  where  different  households  are  sampled  at  every
time point,  and  cohort,  where  the  same  households  are  followed  over  the  course  of  the study  period.
The  search  for an  optimal  design  uses  Bayesian  computationally  intensive  methods  to  explore  the joint
parameter-design  space  combined  with  the  Shannon  entropy  of  the  posteriors  to estimate  the  amount  of
information  in  each  design.  For  the  cross-sectional  design,  the  amount  of information  increases  with  the
sampling  intensity,  i.e.,  the designs  with  the  highest  number  of  time  points  have  the  most  information.  On
the  other  hand,  the  cohort  design  often  exhibits  a trade-off  between  the  number  of  households  sampled
and  the  intensity  of  follow-up.  Our  results  broadly  support  the  choices  made  in existing  epidemiolog-
ical  data  collection  studies.  Prospective  problem-specific  use  of  our  computational  methods  can  bring
significant  benefits  in guiding  future  study  designs.

©  2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Mathematical models have been identified as important tools
in the description of the transmission of infections as well
as the evaluation of control strategies (Keeling and Rohani,
2007; Anderson and May, 1991). Early infection models fre-
quently assumed that the population mixed homogeneously with
frequency- or density-dependent transmission (Anderson and May,
1991). The homogeneous-mixing assumption can be extended rel-
atively straightforwardly to allow for host heterogeneities such as
stratification by age (Anderson and May, 1982; Schenzle, 1984;
Keeling and Rohani, 2007). Further extensions involve dividing the
population into activity-based risk groups (Hadeler and Castillo-
Chavez, 1995; Sutton et al., 2012) or households (Becker and Dietz,
1995; Ball and Neal, 2002; House and Keeling, 2009).

For a number of infections requiring close contacts, trans-
mission within the household (generally defined as a group of
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individuals sharing living arrangements) has been identified as
an important component of spread (Munywoki and Koech, 2013;
Cauchemez et al., 2014) due to the greater intimacy and the stable
nature of the contacts compared to contacts outside the house-
holds (Longini et al., 1982; Read et al., 2008). This has led to
the development of household driven dynamic models for the
exploration of targeted vaccination programmes (Ball et al., 1997;
Becker and Starczak, 1997; House and Keeling, 2009; Poletti et al.,
2015). Following their development and more recent usage, these
models require parameterization by fitting to household-stratified
infection data, typically on final outcomes (O’Neill et al., 2000;
Demiris and O’Neill, 2005; Neal, 2012). Advances in laboratory
techniques mean that more detailed, temporal, data have increas-
ingly become available (Munywoki and Koech, 2013; Cowling
et al., 2009; Horby et al., 2012; Hayward et al., 2014) although
these remain costly and time consuming to collect, motivat-
ing the question of whether the design of these studies can be
optimised.

In order to design a study, choices have to be made on overall
protocol, the number of participants, duration, the number of time
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points to sample, the sensitivity and specificity of tests, and many
other questions – all of which should be guided by both knowledge
of the system to be measured and resource constraints. This paper
addresses the question of designing studies to collect household
epidemic data in order to maximize the information available to
calibrate the parameters of a household stratified epidemic model
given a fixed budget. Household stratified data collection usually
involves enrolling households and prospectively following them
up to collect samples for pathogen identification. In designing these
studies, two main decisions need to be made, with the first being the
number of households to enroll and the second being the frequency
of data collection or the number of times to collect samples from
individuals.

Previous work done by Klick et al. (2012, 2014) evaluated study
designs that make most cost-effective use of resources for accu-
rately and robustly estimating the secondary attack proportion
(SAP) from a set of households in a transmission study and for max-
imising statistical power. These studies were carried out within the
framework of classical optimal design of experiments and were not
concerned with estimation of the parameters of a fully mechanistic,
temporal, non-linear epidemic model, instead focusing on careful
estimation of a static proportion of secondary infections. On the
other hand, work by Cook et al. (2008) considered optimisation
of the exact set of time points at which the SI epidemic model is
observed, but restricted to one population rather than a population
of households.

Here, we provide for the first time a systematic method to
optimise information content of household-stratified studies of
infection over time at fixed cost, which involves the evaluation of an
optimal trade-off between the sample size (number of households
enrolled) and the intensity of follow-up (number of time points
at which we assume all households are observed). Since the mod-
els involved do not have simple likelihood functions, we  adopt a
Bayesian experimental design framework which enables, amongst
other things, the use of a computationally intensive Markov chain
Monte Carlo (MCMC) methodology to deal with arbitrary like-
lihoods. Lindley (1970, pp. 19–20) presents a decision theoretic
approach to experimental design, arguing that a good way  to design
experiments is to specify a utility function which should reflect
the purpose of the experiment. Since the main goal of the current
work involves making inference on model parameters, we have
used a utility function based on Shannon information (Shannon,
1948), a popular choice in Bayesian optimal experimental design
that captures many of our intuitions about information (Chaloner
and Verdinelli, 1995) and which we discuss in more depth in the
Methods section below. Our design choice is, overall, regarded as a
decision problem selecting the design that maximises the expected
utility.

Competing study designs will be evaluated under two  proto-
cols: (1) longitudinal/cross-sectional and (2) cohort. Under the
cross-sectional model, the assumption is that the households are
randomly selected at every time-point the samples need to be
taken, while the cohort model assumes that the same house-
holds are followed and sampled throughout the study period. We
note that the estimates of information content we  provide can-
not be used to compare these two protocols. In practice, however,
we expect that considerations such as gaining informed consent,
recruitment and retention of participants and other practical con-
siderations will take precedence in determining the overall study
protocol. This may  in fact lead to a hybrid design where new
households are chosen at each time-point from within a larger
pre-specified grouping – our cross-sectional design emerges from
such a hybrid in the limit of a large grouping, and the cohort in the
limit of a small grouping – with an example of such an approach
being the virological confirmation of selected www.flusurvey.org.
uk participants.

In the next sections, we  describe the household model, the opti-
mal  design formulation including the utility function, the results
and a general discussion.

2. Materials and methods

2.1. The household model

We  consider the realistic scenario in which the number of
households in the population is large, so the overall epidemic is
well approximated by its deterministic limit (Ball, 1999; House and
Keeling, 2008; Ball and Neal, 2002). We  also assume that the num-
ber of households as a whole is much larger than the number of
experimentally sampled households, so that the observed state of
the sampled households bears negligible impact on the epidemic
dynamics in the rest of the population.

We  will also consider a pathogen for which individuals develop
permanent immunity following infection, leading to an SIR com-
partmental model with S, I and R representing the proportion of
the population that is in the susceptible, infected and removed
(immune) classes respectively. The deterministic dynamics of this
model in the absence of demography have been well studied
(Anderson and May, 1991) and correspond to the special case of
our general formalism where all households are of size 1 (or where
within-household transmission does not occur):

dS

dt
= −ˇSI,

dI

dt
= ˇSI − �I,

dR

dt
= �I. (1)

Here  ̌ and � represent the global transmission rate and the rate of
recovery from infection respectively.

To model household-stratified transmission, individuals are
assumed to retain their global contacts within the population and
also experience an extra force of infection at a rate � per infectious
member within the household. The model is therefore composed
of two  transmission rates: one representing transmission between
susceptible-infected pairs the same household, �, and the other
representing transmission between general members of the com-
munity, ˇ. The proportion of households with s susceptibles, i
infectives and r recovered individuals at time t is represented by
Ps,i,r(t), and the proportion of the overall population that is infective
is

I(t) =
∑

s,i,r iPs,i,r(t)∑
s,i,r(s + i + r)Ps,i,r(t)

. (2)

The complete dynamics are modelled by considering all the pos-
sible household infection configurations with the full dynamics
determined by the 3 processes visualised in Fig. 1A–C: within
household transmission (rate �); random transmission between
individuals in the population (rate ˇ); and recovery from infection
(rate �). The dynamics are therefore described by a set of ordinary
differential equations (ODEs)

dPs,i,r

dt
= �

[
−iPs,i,r + (i + 1)Ps,i+1,r−1

]

+ �
[
−siPs,i,r + (s + 1)(i  − 1)Ps+1,i−1,r

]
+ ˇI(t)

[
−sPs,i,r + (s + 1)Ps+1,i−1,r

]
. (3)

A rigorous derivation of Eq. (3) can be found in the literature (Ball,
1999; House and Keeling, 2009, 2008). This system does not have a
solution in terms of elementary analytic functions, but can be inte-
grated numerically. This requires some care since there are multiple
time scales in the system – intuitively, the timescales associated
with the progression of the epidemic in the general population,
and the (shorter) timescales associated with the progression of a
within-household epidemic – that make the system numerically
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