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a  b  s  t  r  a  c  t

Calculation  of  expected  outbreak  size  of  a simple  contagion  on  a known  contact  network  is  a  common  and
important  epidemiological  task,  and  is typically  carried  out by  computationally  intensive  simulation.  We
describe  an efficient  exact  method  to  calculate  the  expected  outbreak  size  of a contagion  on  an  outbreak-
invariant  network  that  is  a directed  and  acyclic,  allowing  us to model  all  dynamically  changing  networks
when  contagion  can only  travel  forward  in time.  We  describe  our  algorithm  and  its use in  pseudocode,
as  well  as showing  examples  of  its  use on  disease  relevant,  data-derived  networks.

©  2016  The  Authors.  Published  by Elsevier  B.V. This  is  an open  access  article  under  the  CC BY  license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Increasingly, models of contagion spread on highly structured
populations are being used to inform disease control (Green et al.,
2008; James et al., 2007; Eames et al., 2015; Danon et al., 2011).
As these models become increasingly complex, simple and robust
approaches to calculate the potential outbreak size become increas-
ingly important. Here, we provide an algorithm which allows this
to be done faster than current methods on a variety of real-world
networks.

Previous research (Eames et al., 2015; Danon et al., 2011) uses
simulation to estimate expected outbreak size on various different
types of network. This is computationally intensive, and provides
only stochastically derived estimates for the outbreak size. We
present an exact method for calculating expected outbreak size.
While our method does not apply to arbitrary contagion spread
on general networks, which is a known NP-hard problem (Shapiro
and Delgado-Eckert, 2012), it is relevant to the wide range of con-
tagion examples that can be expressed on the well-studied class
of directed acyclic graphs (DAGs): networks in which there are no
directed cycles. This class is particularly useful for modelling tem-
porally changing contact networks, and the notion that time (and
therefore infection) only flows in one direction is central to our
approach.
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Our method has two  advantages over simulation: it is compu-
tationally much faster, and it gives an exact answer rather than a
statistical estimate. These two advantages are of particular impor-
tance in applications where a rapid estimate is important, without
the requirement for a detailed behavioural or disease model, as in
an outbreak situation with stringent externally-imposed timelines,
or as an internal component in a larger software package that must
complete a very large number of outbreak size calculations over a
large number of different networks.

The method we  describe here has much in common with several
previously described methods: the novelty is largely in our algo-
rithmic treatment and its use on a particular multi-layer directed
acyclic graph (a structure also used in Kim and Anderson, 2012;
Valdano et al., 2015) in order to incorporate a temporally chang-
ing network. We  wish to highlight the relatedness of our approach
to the methods of Rogers(Rogers, 2015), and Ludwig’s method
(Ludwig, 1975) as applied to a random network by House et al.
(2012).

Rogers (2015) and Karrer and Newman (2010) describe the use
of a cavity method on a network to calculate node risk and travel the
development of an outbreak, as well as its final size. Rogers (2015)
uses a tree approximation of a static network in its calculations of
probability of given node’s involvement in an outbreak; we  apply
a similar calculation to our directed acyclic graph.

Ludwig’s method works on a system of pre-generated ranks in
which nodes are assigned an order, and considered for infection in
that order, and when applied to a network, requires the network
be unchanged by an outbreak (Ludwig, 1975; House et al., 2012;
Pellis et al., 2008). Given a starting node for the outbreak, nodes are
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sorted by the length of their shortest paths to the starting node, with
these shortest path lengths used as each node’s “rank”. Nodes are
considered for infection by order of their ranks, with nodes closer
to the starting node considered earlier. As described in House et al.
(2012), an implementation of Sellke’s construction (Sellke, 2012)
on a network bears a close resemblance to Ludwig’s method on a
network.

As with Ludwig’s method, we will consider nodes in a rough
order of distance from an outbreak seeding set of nodes, though for
our approach any topological ordering would suffice, and (again like
in Ludwig’s method) we will require our network to be invariant
with respect to the outbreak.

We direct the reader to House et al. (2012) for a review of a
wide variety of methods in use for calculating the probability mass
function of a final outbreak size.

We present the method on a DAG derived from an infection net-
work in Section 3. In Section 4 we show the method on several
example networks, including two derived from real-world data.
Section 5 compares our method to a series of simulations, demon-
strating the advantages in speed and accuracy. We  conclude with
some adaptations which can be made to run the algorithm on more
complex contagion networks, and some suggestions for further
research. We  provide open-source Python code which we  hope will
be of use in the future to other researchers.1

2. Overview of algorithm on a directed acyclic graph

We  describe our approach in several steps: first, following Kim
and Anderson (2012) we describe the production of a directed
acyclic graph to describe a dynamically changing network. While
we will focus on calculating on a dynamic network, it is possible to
produce the directed acyclic graph required from a static network
simply by repeating static contacts over many time steps.

Using this DAG as input, we then describe an efficient algorithm
to calculate the expectation that any given node will be infected at a
given time in an epidemic where individuals become immediately
infectious and remain infections indefinitely (an SI model), or can
recover and become immediately susceptible again (SIS). We allow
an arbitrary choice, or distribution of choices, of starting nodes and
times for the epidemic. Because expectations can be combined lin-
early (Hamming, 1991), this node-by-node expectation calculation
enables us to calculate the expected size of an overall outbreak
exactly at any fixed timepoint, again, either with a set starting node
and time, or over a specified distribution of starting points.

2.1. Producing a directed acyclic graph from a dynamic network

In our preferred method for producing a DAG from a dynamic
network, we essentially identify each agent at each time step with
a node in the DAG, with an edge from one node (u, t) in the DAG to
another (v, t + 1) if the state of the vertex u at time t can affect the
state of the vertex v at time t + 1. As in Kim and Anderson (2012)
and Valdano et al. (2015) we use a multi-layered directed acyclic
graph in which each layer is a time slice to encode a dynamically
changing network of impulse edges. We  assume throughout that
disease cannot spread instantaneously, that is, an agent infected at
t cannot infect another instantaneously, but is only able to infect
others at t + �, where � is an appropriately and arbitrarily small
number. We  also assume that the set of contacts that make up the
network are known before the beginning of our calculation.

Let G = (V, �E) be a graph (or network) with vertices V and time-
impulse directed edges �E.  Let T be the relation between impulses

1 https://github.com/magicicada/expected-outbreak-size.

and the times at which they occur. We  assume that the range of
T is a subset of the integers. Let E be the set of edges expressed
as triples: (u, v, t) indicating an edge from u to v at time t, and let
Q : E → [0...1]  be the probability that, if the source of each impulse
contact is infected, it will infect the destination of the edges.

Let VT be the set: {(v, t) where v ∈ V , and t ∈ [min(range(T)) −
1... max(range(T))]} Let �ET be the set:

• {((v, t) → (u, s)) where u = v and s = t+ 1} ∪
• {((v, t) → (u, s)) where t = T(u, v) and s = t + 1}

Let P : �ET → [0...1]  be a function from �ET to real-numbered
probabilities between 0 and 1 such that:

• for edge ((u, t) → (u, t + 1)), we set P(((v, t) → (u, t + 1))) to the
probability that the disease persists at v from time t to t + 1 and
• for edge ((v, t) → (u, t + 1)) where (v, u, t) ∈ T,  we set P(((v, t) →

(u, s))) = Q (v, u, t)

We have the building blocks of our directed acyclic graph in the
form of a node set, an edge set, and probabilistic weights for the
edges. Let graph GT = (VT , �ET ) be a directed graph: we know that
GT is acyclic because for every edge ((v, t) → (u, s)) ∈ ET we know
that s > t; intuitively, the edges only go forward in time.

With the directed acyclic graph GT = (VT , �ET ) and the probability
weighting function P we have the required input for our algorithm.
Therefore, given a set of integer-time impulse contacts with prob-
abilities of disease transmission associated with each contact, we
can produce the graph we  need, and use our algorithm to calculate
expected outbreak size.

3. Expected outbreak size algorithm

While our algorithm below will work on any directed acyclic
graph, we  describe it in the context of a time-expanded graph as
above, as this is the most relevant to our examples.

Let G = (V, �E) be a directed, acyclic graph as described above
and P : �E→ [0...1]  be a function from the edges of G to probabil-
ities such that P((u → v)) is the probability that u will infect v  if
it is, itself, infected. Note that, as described, there may  be edges
((u, t) → (v, t + 1)) where u /= v between different agents at suc-
cessive times, as well as edges ((u, t) → (u, t + 1)) between the same
agent at successive times. The probability that an edge of the type
((u, t) → (u, t + 1)) transmits is the probability that an infection of
agent u at time t persists to time t + 1. In general, the probabilities
that edges transmit infection may differ: this is no impediment, so
long as it is recorded in P.

We start with a question: what is the expectation that (v, t)
is infected in an epidemic with a known starting point (u, t0)? If
we consider all nodes at all times that could be infected in an epi-
demic stating at (u, t0), we  can identify the set of nodes that could
directly infect (v, t): those that are the source of an edge leading
into (v, t) that could, themselves, potentially be infected by an epi-
demic starting at (u, t0). We  call these the parents of (v, t), and due
to the construction of the DAG we  have used, we know that they
are in time slice t − 1. Let A = {(p0, t − 1), (p1, t − 1) . . . (pm, t − 1)} be
the set of parents of (v, t) in a traversal of G from (u, t0). Note that, if
we are using a time-expanded graph as defined above, then exactly
one pi will be equal to u: exactly one parent of an agent at a time
is that agent at the previous time. Then the probability that (v, t)
is infected in an outbreak is the probability that at least one par-
ent is infected and infects (v, t). Recall that P(((pi, t − 1) → (v, t)))
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