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a  b  s  t  r  a  c  t

Background:  A  better  characterization  of  the  early  growth  dynamics  of an  epidemic  is  needed  to  dissect
the  important  drivers  of disease  transmission,  refine  existing  transmission  models,  and  improve  disease
forecasts.
Materials  and  methods:  We introduce  a 2-parameter  generalized-growth  model  to  characterize  the
ascending  phase  of  an  outbreak  and  capture  epidemic  profiles  ranging  from  sub-exponential  to exponen-
tial  growth.  We  test  the model  against  empirical  outbreak  data  representing  a  variety  of  viral  pathogens
in  historic  and  contemporary  populations,  and  provide  simulations  highlighting  the  importance  of  sub-
exponential  growth  for forecasting  purposes.
Results: We  applied  the  generalized-growth  model  to 20 infectious  disease  outbreaks  representing  a
range  of transmission  routes.  We  uncovered  epidemic  profiles  ranging  from  very  slow  growth  (p = 0.14
for  the  Ebola  outbreak  in Bomi,  Liberia  (2014))  to  near  exponential  (p  >  0.9  for the  smallpox  outbreak  in
Khulna  (1972),  and  the  1918  pandemic  influenza  in  San  Francisco).  The  foot-and-mouth  disease  outbreak
in  Uruguay  displayed  a profile  of slower  growth  while  the  growth  pattern  of the  HIV/AIDS  epidemic  in
Japan  was  approximately  linear.  The  West  African  Ebola  epidemic  provided  a unique  opportunity  to
explore  how  growth  profiles  vary  by  geography;  analysis  of  the  largest  district-level  outbreaks  revealed
substantial  growth  variations  (mean  p =  0.59, range:  0.14–0.97).  The  districts  of  Margibi  in Liberia  and
Bombali  and  Bo  in  Sierra Leone  had  near-exponential  growth,  while  the  districts  of  Bomi in Liberia  and
Kenema  in  Sierra  Leone  displayed  near  constant  incidences.
Conclusions:  Our  findings  reveal  significant  variation  in  epidemic  growth  patterns  across  different  infec-
tious  disease  outbreaks  and highlights  that  sub-exponential  growth  is  a common  phenomenon,  especially
for  pathogens  that are  not  airborne.  Sub-exponential  growth  profiles  may  result  from  heterogeneity  in
contact  structures  or risk  groups,  reactive  behavior  changes,  or the  early  onset  of  interventions  strate-
gies,  and  consideration  of “deceleration  parameters”  may  be useful  to refine  existing  mathematical
transmission  models  and  improve  disease  forecasts.

©  2016  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Identifying signature features of the growth kinetics of an out-
break can be useful to design reliable models of disease spread
and understand important details of the transmission dynamics
of an infectious disease (Chowell et al., 2015). However, ideal
data are typically not available; rather there will be an absence
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of high-resolution epidemiological datasets needed to character-
ize transmission pathways in key settings, e.g., transmission trees
in hospitals, schools, households (Cleaton et al., 2015; Faye et al.,
2015). The force of infection in mathematical transmission models
is typically estimated using time-series data that describe epi-
demic growth as a function of time (e.g., (Lipsitch et al., 2003;
Chowell et al., 2003; Nishiura et al., 1922; Chowell et al., 2004; Riley
and Ferguson, 2006; Dietz, 2009)). In fact, during the 2003 SARS
(Severe Acute Respiratory Syndrome) threat, the 2009 A/H1N1
influenza pandemic, and the 2013–2015 Ebola epidemic in West
Africa, aggregated case series at the national or district level were
the primary sources of data available for model calibration (e.g.,
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Riley et al., 2003; Pandey et al., 2014; Ferguson et al., 2006; Halloran
et al., 2002). A better understanding of observed epidemic growth
patterns across different pathogens and across temporal and social
contexts could prove useful to improve our ability to design disease
transmission models, including the important task of forecasting
the likely final size of the epidemic (morbidity, mortality impact),
as well as to assess the effects of control interventions.

Classical compartmental transmission models assume expo-
nential growth during the early phase of a well-mixed population
(Anderson and May, 1991). In a recent article (Chowell et al., 2015)
we reported that the initial apparently exponential spread of the
2013–2015 Ebola epidemic in West Africa was in fact a composition
of local asynchronous outbreaks at the district or county level that
each displayed sub-exponential growth patterns during at least 3
consecutive disease generations (Chowell et al., 2015). In semi-
logarithmic scale, exponential growth is evident if a straight line fits
well several consecutive disease generations of the epidemic curve,
whereas a strong downward curvature in semi-logarithmic scale is
indicative of sub-exponential growth. Here, we introduce a general-
ized model with a “deceleration” parameter that modulates growth
and helps quantify departure from exponential theory, allowing
for behaviors ranging from constant to exponentially-growing inci-
dences (Tolle, 2003). Our simple quantitative framework is useful
for public health decision-making as it provides a time-varying
assessment of growth rates and informs the likely “signature fea-
ture” of the threat as well as the type and intensity of interventions
required for effective mitigation. We illustrate our method using a
diverse set of historic and contemporary outbreaks of acute viral
and bacterial pathogens, including the recent West African Ebola
virus epidemic, focusing on local outbreaks. Our results under-
score the high sensitivity of epidemic size to small variations in
the “deceleration” parameter.

2. Materials and methods

2.1. Data sources

We  characterized the initial epidemic growth patterns in var-
ious infectious disease incidence time series including pandemic
influenza, measles, smallpox, bubonic plague, foot-and-mouth dis-
ease (FMD), HIV/AIDS, and Ebola (Table 1). The temporal resolution
of the datasets varied from daily, weekly, to annual. These selected
outbreak data represent a convenience sample encompassing a
range of pathogens, geographic contexts, and time periods. For each
outbreak, the onset week corresponds to the first observation asso-
ciated with a monotonic increase in incident cases, up to the peak
incidence.

2.2. Generalized epidemic growth model

The growth pattern of infectious disease outbreaks has been
extensively studied using models that assume exponential growth
dynamics in the absence of control interventions (e.g., classi-
cal compartmental models (Anderson and May, 1991; Kermack
and McKendrick, 1937)). Hence, the cumulative number of cases,
C(t), grows according to the equation: C (t) = C (0) ert where, r
is the growth rate per unit of time, t denotes time, and C(0)
is the number of cases at the start of the outbreak. Here the
growth rate “r” is related to R0 as derived from classic SIR-
type compartmental transmission models, e.g., for the simple
SIR (susceptible-infected-removed) model, R0 = 1 + r/� where, 1/�
is the mean infectious period (Anderson and May, 1991). How-
ever, slower-than-exponential epidemic growth is expected in
settings that involve highly constrained population contact struc-
tures with infectious diseases that spread via close contacts (e.g.,

sexually-transmitted infectious diseases, smallpox, and Ebola)
(Chowell et al., 2015). To relax the assumption of exponential
growth, we  use a simple generalized model (Tolle, 2003) from the
field of demography (e.g., Reppell et al., 2014), following:

dC (t)
dt

= C ′ (t) = rC(t)p

where, C′(t) describes the incidence curve over time t, the solution
C(t) describes the cumulative number of cases at time t, r is a posi-
tive parameter denoting the growth rate (1/time), and p ∈ [0, 1] is a
“deceleration of growth” parameter. If p = 0, this equation describes
constant incidence over time and the cumulative number of cases
grows linearly while p = 1 models exponential growth dynamics
(i.e., Malthus equation). Intermediate values of p between 0 and
1 describe sub-exponential (e.g., polynomial) growth patterns. For
example, if p = 1/2 incidence grows linearly while the cumulative
number of cases follows a quadratic polynomial. If p = 2/3 incidence
grows quadratically while the cumulative number of cases fits a
cubic polynomial. For sub-exponential growth (i.e., 0 < p < 1) the
solution of this equation is given by the following polynomial of
degree m (Tolle, 2003):

C (t) =
(

r

m
t + A

)m

where, m is a positive integer, and the “deceleration of growth”
parameter is given by p = 1 − 1/m. (Tolle, 2003) A is a constant that
depends on the initial condition, C(0). Specifically, A = m

√
C (0).

Furthermore, for sub-exponential growth dynamics, the relative
growth rate, [dC(t)/dt]/C(t) ∝ m/t, decreases inversely with time
while the doubling time Td ∝ t(ln 2)/m increases proportionally
with time (Fig. 1) (Chowell et al., 2015). This differs from the con-
stant doubling time that characterizes exponential growth. Here,
we do not consider faster than exponential growth (i.e., super-
exponential growth), for which p exceeds 1.0 (Tolle, 2003).

2.3. Parameter estimation

Parameters r and p can be jointly estimated through nonlinear
least-square curve fitting to the case incidence curve modeled by
equation C′(t), in the first few generations of disease spread. For
this purpose, we used the Levenberg–Marquardt algorithm imple-
mented in MATLAB (The Mathworks, Inc.) as in prior studies (e.g.,
Chowell et al., 2007). The initial number of cases C(0) was fixed
according to the first observation. We  estimate r and p during
the initial epidemic growth phase comprising approximately 3–5
generations of disease transmission when the proportion of suscep-
tible individuals in the population approximates its initial value.
The mean generation interval has been estimated at ∼3–5 days
for influenza (Carrat et al., 2008), about two weeks for measles
(Fine, 2003), smallpox (Halloran et al., 2002), and Ebola (Team
WHOE.R., 2014), about one week for pneumonic plague (Gani and
Leach, 2004), ∼3–7 days for foot-and-mouth disease (Burrows,
1968) and has been estimated at ∼4 years for HIV/AIDS (Nishiura,
2010).

2.4. Confidence intervals

Confidence intervals for the model parameter estimates were
constructed by simulating 200 realizations of the best-fit curve C′(t)
using parametric bootstrap with a Poisson error structure, as in
prior studies (Chowell et al., 2007; Chowell et al., 2006a). Param-
eters r and p were then estimated from each of the 200 simulated
epidemic curves to derive nominal 95% confidence intervals.
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