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Background: A better characterization of the early growth dynamics of an epidemic is needed to dissect
the important drivers of disease transmission, refine existing transmission models, and improve disease
forecasts.
Materials and methods: We introduce a 2-parameter generalized-growth model to characterize the
ascending phase of an outbreak and capture epidemic profiles ranging from sub-exponential to exponen-
tial growth. We test the model against empirical outbreak data representing a variety of viral pathogens
in historic and contemporary populations, and provide simulations highlighting the importance of sub-
exponential growth for forecasting purposes.
Results: We applied the generalized-growth model to 20 infectious disease outbreaks representing a
range of transmission routes. We uncovered epidemic profiles ranging from very slow growth (p=0.14
for the Ebola outbreak in Bomi, Liberia (2014)) to near exponential (p > 0.9 for the smallpox outbreak in
Khulna (1972), and the 1918 pandemic influenza in San Francisco). The foot-and-mouth disease outbreak
in Uruguay displayed a profile of slower growth while the growth pattern of the HIV/AIDS epidemic in
Japan was approximately linear. The West African Ebola epidemic provided a unique opportunity to
explore how growth profiles vary by geography; analysis of the largest district-level outbreaks revealed
substantial growth variations (mean p=0.59, range: 0.14-0.97). The districts of Margibi in Liberia and
Bombali and Bo in Sierra Leone had near-exponential growth, while the districts of Bomi in Liberia and
Kenema in Sierra Leone displayed near constant incidences.
Conclusions: Our findings reveal significant variation in epidemic growth patterns across different infec-
tious disease outbreaks and highlights that sub-exponential growth is a common phenomenon, especially
for pathogens that are not airborne. Sub-exponential growth profiles may result from heterogeneity in
contact structures or risk groups, reactive behavior changes, or the early onset of interventions strate-
gies, and consideration of “deceleration parameters” may be useful to refine existing mathematical
transmission models and improve disease forecasts.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction of high-resolution epidemiological datasets needed to character-

ize transmission pathways in key settings, e.g., transmission trees

Identifying signature features of the growth kinetics of an out-
break can be useful to design reliable models of disease spread
and understand important details of the transmission dynamics
of an infectious disease (Chowell et al., 2015). However, ideal
data are typically not available; rather there will be an absence
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in hospitals, schools, households (Cleaton et al., 2015; Faye et al.,
2015). The force of infection in mathematical transmission models
is typically estimated using time-series data that describe epi-
demic growth as a function of time (e.g., (Lipsitch et al., 2003;
Chowell et al.,2003; Nishiura et al., 1922; Chowell et al., 2004; Riley
and Ferguson, 2006; Dietz, 2009)). In fact, during the 2003 SARS
(Severe Acute Respiratory Syndrome) threat, the 2009 A/H1N1
influenza pandemic, and the 2013-2015 Ebola epidemic in West
Africa, aggregated case series at the national or district level were
the primary sources of data available for model calibration (e.g.,
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0/).
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Riley et al.,2003; Pandey et al.,2014; Ferguson et al., 2006; Halloran
et al., 2002). A better understanding of observed epidemic growth
patterns across different pathogens and across temporal and social
contexts could prove useful to improve our ability to design disease
transmission models, including the important task of forecasting
the likely final size of the epidemic (morbidity, mortality impact),
as well as to assess the effects of control interventions.

Classical compartmental transmission models assume expo-
nential growth during the early phase of a well-mixed population
(Anderson and May, 1991). In a recent article (Chowell et al., 2015)
we reported that the initial apparently exponential spread of the
2013-2015 Ebola epidemic in West Africa was in fact a composition
of local asynchronous outbreaks at the district or county level that
each displayed sub-exponential growth patterns during at least 3
consecutive disease generations (Chowell et al,, 2015). In semi-
logarithmic scale, exponential growth is evident if a straight line fits
well several consecutive disease generations of the epidemic curve,
whereas a strong downward curvature in semi-logarithmic scale is
indicative of sub-exponential growth. Here, we introduce a general-
ized model with a “deceleration” parameter that modulates growth
and helps quantify departure from exponential theory, allowing
for behaviors ranging from constant to exponentially-growing inci-
dences (Tolle, 2003). Our simple quantitative framework is useful
for public health decision-making as it provides a time-varying
assessment of growth rates and informs the likely “signature fea-
ture” of the threat as well as the type and intensity of interventions
required for effective mitigation. We illustrate our method using a
diverse set of historic and contemporary outbreaks of acute viral
and bacterial pathogens, including the recent West African Ebola
virus epidemic, focusing on local outbreaks. Our results under-
score the high sensitivity of epidemic size to small variations in
the “deceleration” parameter.

2. Materials and methods
2.1. Data sources

We characterized the initial epidemic growth patterns in var-
ious infectious disease incidence time series including pandemic
influenza, measles, smallpox, bubonic plague, foot-and-mouth dis-
ease (FMD), HIV/AIDS, and Ebola (Table 1). The temporal resolution
of the datasets varied from daily, weekly, to annual. These selected
outbreak data represent a convenience sample encompassing a
range of pathogens, geographic contexts, and time periods. For each
outbreak, the onset week corresponds to the first observation asso-
ciated with a monotonic increase in incident cases, up to the peak
incidence.

2.2. Generalized epidemic growth model

The growth pattern of infectious disease outbreaks has been
extensively studied using models that assume exponential growth
dynamics in the absence of control interventions (e.g., classi-
cal compartmental models (Anderson and May, 1991; Kermack
and McKendrick, 1937)). Hence, the cumulative number of cases,
C(t), grows according to the equation: C(t)=C(0)e™ where, r
is the growth rate per unit of time, t denotes time, and C(0)
is the number of cases at the start of the outbreak. Here the
growth rate “r” is related to Ry as derived from classic SIR-
type compartmental transmission models, e.g., for the simple
SIR (susceptible-infected-removed) model, Ry =1 +r/y where, 1]y
is the mean infectious period (Anderson and May, 1991). How-
ever, slower-than-exponential epidemic growth is expected in
settings that involve highly constrained population contact struc-
tures with infectious diseases that spread via close contacts (e.g.,

sexually-transmitted infectious diseases, smallpox, and Ebola)
(Chowell et al., 2015). To relax the assumption of exponential
growth, we use a simple generalized model (Tolle, 2003) from the
field of demography (e.g., Reppell et al., 2014), following:

% =C/(t) =rC(t)P

where, C'(t) describes the incidence curve over time t, the solution
C(t) describes the cumulative number of cases at time t, r is a posi-
tive parameter denoting the growth rate (1/time),andp € [0, 1]isa
“deceleration of growth” parameter. If p=0, this equation describes
constant incidence over time and the cumulative number of cases
grows linearly while p=1 models exponential growth dynamics
(i.e., Malthus equation). Intermediate values of p between 0 and
1 describe sub-exponential (e.g., polynomial) growth patterns. For
example, if p=1/2 incidence grows linearly while the cumulative
number of cases follows a quadratic polynomial. If p = 2/3 incidence
grows quadratically while the cumulative number of cases fits a
cubic polynomial. For sub-exponential growth (i.e.,, 0<p<1) the
solution of this equation is given by the following polynomial of
degree m (Tolle, 2003):

CU):(%I+A)m

where, m is a positive integer, and the “deceleration of growth”
parameter is given by p=1 — 1/m. (Tolle, 2003) A is a constant that
depends on the initial condition, C(0). Specifically, A= %/C(0).
Furthermore, for sub-exponential growth dynamics, the relative
growth rate, [dC(t)/dt]/C(t)xm/t, decreases inversely with time
while the doubling time Ty« t(In2)/m increases proportionally
with time (Fig. 1) (Chowell et al., 2015). This differs from the con-
stant doubling time that characterizes exponential growth. Here,
we do not consider faster than exponential growth (i.e., super-
exponential growth), for which p exceeds 1.0 (Tolle, 2003).

2.3. Parameter estimation

Parameters r and p can be jointly estimated through nonlinear
least-square curve fitting to the case incidence curve modeled by
equation C'(t), in the first few generations of disease spread. For
this purpose, we used the Levenberg—Marquardt algorithm imple-
mented in MATLAB (The Mathworks, Inc.) as in prior studies (e.g.,
Chowell et al., 2007). The initial number of cases ((0) was fixed
according to the first observation. We estimate r and p during
the initial epidemic growth phase comprising approximately 3-5
generations of disease transmission when the proportion of suscep-
tible individuals in the population approximates its initial value.
The mean generation interval has been estimated at ~3-5 days
for influenza (Carrat et al., 2008), about two weeks for measles
(Fine, 2003), smallpox (Halloran et al., 2002), and Ebola (Team
WHOE.R., 2014), about one week for pneumonic plague (Gani and
Leach, 2004), ~3-7 days for foot-and-mouth disease (Burrows,
1968) and has been estimated at ~4 years for HIV/AIDS (Nishiura,
2010).

2.4. Confidence intervals

Confidence intervals for the model parameter estimates were
constructed by simulating 200 realizations of the best-fit curve C'(t)
using parametric bootstrap with a Poisson error structure, as in
prior studies (Chowell et al., 2007; Chowell et al., 2006a). Param-
eters r and p were then estimated from each of the 200 simulated
epidemic curves to derive nominal 95% confidence intervals.
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