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a  b  s  t  r  a  c  t

One  of  the  fundamental  problems  in public  health  is how  to allocate  a limited  set  of resources  to  have  the
greatest  benefit  on  the  health  of the  population.  This  often  leads  to difficult  value  judgements  about  bud-
get  allocations.  However,  one  scenario  that  is  directly  amenable  to mathematical  analysis  is  the  optimal
allocation  of a  finite  stockpile  of vaccine  when  the  population  is partitioned  into  many  relatively  small
cliques,  often  conceptualised  as households.  For  the  case  of  SIR  (susceptible–infectious–recovered)  dynam-
ics,  analysis  and  numerics  have  supported  the  conjecture  that an  equalising  strategy  (which  leaves  equal
numbers  of  susceptible  individuals  in  each  household)  is  optimal  under  certain  conditions.  However,
there  exists  evidence  that some  of  these  conditions  may  be  invalid  or unsuitable  in many  situations.  Here
we  consider  how  well  the equalising  strategy  performs  in  a range  of other  scenarios  that  deviate  from
the  idealised  household  model.  We  find  that  in  general  the  equalising  strategy  often  performs  optimally,
even  far  from  the idealised  case.  However,  when  considering  large  subpopulation  sizes,  frequency-
dependent  transmission  and  intermediate  levels  of  vaccination,  optimality  is often  achieved  through
more  heterogeneous  vaccination  strategies.

©  2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
(http://creativecommons.org/licenses/by/4.0/).

Introduction

Mathematical modelling has had a profound influence on pub-
lic health associated with infectious diseases; most public-health
decisions are now supported by detailed mathematical predic-
tions that quantify the incremental costs and benefits of any new
policy. This is particularly true for changes to vaccination pro-
grams (including the introduction of new vaccines) where there are
potentially many subtle non-linearities between the distribution of
vaccine and the public-health benefits (Anderson and May, 1983;
Bansal et al., 2006; van Hoek et al., 2011). In principle the aim of
this modelling for vaccination is relatively simple: to find a strategy
that produces the maximum reduction in cases (and in particular
severe health outcomes) for a given cost (Woodhall et al., 2009;
Baguelin et al., 2010; Klepac et al., 2011; Brown and Jane White,
2011). Yet despite this apparent simplicity, determining the opti-
mal  policy is highly computationally intensive due to the vast range
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of strategies that can be investigated (Dushoff et al., 2007; Hall et al.,
2007; Keeling and White, 2011). In addition when there are mul-
tiple desirable outcomes, it is generally impossible to optimise all
of them simultaneously and a careful definition of the objective is
required (Hollingsworth et al., 2011).

The ground-breaking work of Ball et al. (1997), Ball and Lyne
(2002) is seen as offering one of the few explicit and rigorous results
in this complex field. In this work it was demonstrated that an
equalising strategy was  optimal for control of an SIR-type infec-
tion in a population segregated into households (or component
subpopulations) of just 2, 3 and 4 individuals. Further, it was conjec-
tured, supported by extensive numerics, that this result holds for
all subpopulation sizes. Here an equalising strategy is one which
leaves an equal number of individuals susceptible in each house-
hold (or subpopulation) irrespective of the size of the household
(e.g. all households of size 3 or more are left with just 3 sus-
ceptible individuals). However, the results are more precise and
constrained than usually appreciated (Ball et al., 1997; Ball and
Lyne, 2002). Firstly, they only strictly apply to density-dependent
transmission, which in the household context means that the risk of
transmission between any two members of the household is inde-
pendent of household size. However, data from detailed household
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studies of influenza suggest that the rate of transmission between
any two household members decreases monotonically with house-
hold size (Cauchemez et al., 2004, 2009; House et al., 2012).
Secondly, optimality refers to maximising the reduction in early
household-to-household transmission (the between-household
reproductive number or R�) for a given supply of vaccine; equiv-
alently, this allows the calculation of the minimal amount of
prophylactic vaccine required to reduce the reproductive num-
ber to one, and hence prevent a large-scale outbreak of infection.
Therefore the equalising strategy does not necessarily hold for
on-going vaccination during an outbreak, nor does it necessarily
protect the most people from infection when there is insufficient
resources to reach the elimination threshold (Hollingsworth et al.,
2011).

Although the equalising strategy and results in this paper are
generally expressed in terms of household-based transmission, the
implications are more wide ranging. Our findings apply to any pop-
ulation that can be modelled in a metapopulation format: multiple
distinct relatively small subpopulations with strong transmission
within the subpopulations but weaker transmission between them.
The only other condition is that there must be a large number of
these subpopulations such that we can take expectations of their
behaviour. As such the models formulated here equally apply to
human populations aggregated into schools, hospitals and local
communities, livestock aggregated into farms, or wildlife that can
be spatially aggregated into regions of suitable habitat. Therefore,
although for brevity and historical consistency, we refer to house-
holds throughout this paper the findings hold for any appropriate
grouping or subpopulation.

It is worth stressing that the equalising strategy and any
improvements outlined in this paper make the simplifying assump-
tion that all individuals in the population are equal apart from their
household composition. In practice, for human populations, both
age and underlying health status dominate the consequences of
infection and hence the need to protect by vaccination. Therefore
it should be stressed that strategies purely based on household
size are idealisations and alternative targeting should often take
priority. However, there are at least two scenarios with this
understanding could be practically useful. Firstly, once the most
vulnerable or high risk members of the population are protected,
the equalising strategy may  provide a means of slowing or contain-
ing epidemic spread when the number of vaccine doses are limited.
Secondly, for livestock infections individual-level heterogeneity is
generally less of a consideration, so targeting based purely on ani-
mal  numbers may  be effective especially when dealing with a costly
vaccine.

Here we examine both analytically and numerically the general-
ity of the equalising strategy. We  first review the previous work and
methodology (Ball et al., 1997; Ball and Lyne, 2002) before consid-
ering the relevance of the equalising strategy for populations that
do not obey density-dependent transmission, while maintaining
the same condition for optimality. We  then numerically explore
the use of the equalising strategy under alternative optimisation
criteria.

The traditional equalising strategy

We  first define the stochastic SIR model in an infinitely large
population of households to set the nomenclature and parameters
of the system. Throughout this paper we formulate and simu-
late models that are Markovian in nature (i.e. transitions occur as
stochastic rates that only depend on the current state of the system,
such that there is no historical knowledge), whereas the original
work on the equalising strategy held for any form of transmission
dynamics (Ball et al., 1997; Ball and Lyne, 2002). While this explicit

decision about the nature of the system is necessary to produce our
quantitative comparison of vaccination priorities, we  believe that
the qualitative findings will hold more generally. We  define the
model in terms of the transitions between states and the rates at
which these transitions occur. There are three possible transitions
within a household of size n:

External Infection

(S, I, R) → (S − 1, I + 1, R) Rate = ˛nĪS

Internal Infection

(S, I, R) → (S − 1, I + 1, R) Rate = ˇnIS

Recovery

(S, I, R) → (S, I − 1, R + 1) Rate = �nI

where S, I and R (S + I + R = n) refer to the number of suscepti-
ble, infectious and recovered/resistant individuals in a household,
while ˛,  ̌ and � capture the rates of external transmission,
internal transmission and recovery; Ī is  the proportion of the
population that is infected, which is calculated as the weighted
average over all households. We  further define hn to be the pro-
portion of households containing n individuals. Throughout we
make the natural assumptions that  ̨ and � are not dependent
on household size, although we  retain the dependence in the
equations as much as possible. We note here that the action
of vaccination is to successfully immunise susceptible individ-
uals, effectively turning them into recovered individuals; hence
as we are considering prophylactic vaccination (before an out-
break) we  assume the action of vaccination is to begin an epidemic
with a mixture of susceptible and recovered individuals in each
household.

Here we have allowed the fundamental rates to be functions
of the household size, n; this is in contrast to the earlier mod-
elling studies where these rates where assumed independent of
the household size (Ball et al., 1997; Becker and Starczak, 1997; Ball
and Lyne, 2002). We  now need to introduce some epidemiological
notation; when ˇn =  ̌ then transmission increases with the num-
ber of individuals in the household and such transmission is known
as density dependent (even though it arises when the parameter is
independent of population size), in contrast when ˇn is a function
of the household size n the transmission is referred to as frequency
dependent. The independence of parameters from household size
(and hence the assumption of density-dependent transmission)
made in previous work has an important epidemiological conse-
quence: the rate of transmission between susceptible and infected
individuals does not depend on the number of recovered indi-
viduals in the household. Therefore rather than considering the
behaviour of a household of type (S, I with R = n − S − I), in the
limited case where independence is assumed, it is sufficient to
consider a smaller household of size S + I without any recovered
individuals.

Following the work of Ball et al. (1997), Ball and Lyne (2002),
the following statements must hold for the equalising strategy to
be optimal:

(i) given two households of size n and two  doses of vaccine, it is
better to vaccinate one individual in each household rather than
two individuals in a single household, for all n; and,

(ii) given a household of size n, a household of size n + 1, and single
dose of vaccine, it is better to vaccinate an individual in the
household of size n + 1, for all n.

Here, ‘better’ and ‘optimal’ are defined with respect to min-
imising the expected number of secondary households infected.
To generate the mathematics equivalent to these two verbal condi-
tions, requires us to consider the household reproductive number,
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