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a  b  s  t  r  a  c  t

Infectious  disease  often  occurs  in  small,  independent  outbreaks  in  populations  with  varying  character-
istics.  Each  outbreak  by itself  may  provide  too  little  information  for accurate  estimation  of  epidemic
model  parameters.  Here  we  show  that  using  standard  stochastic  epidemic  models  for  each  outbreak  and
allowing  parameters  to  vary  between  outbreaks  according  to  a linear  predictor  leads  to a  generalized  lin-
ear  model  that  accurately  estimates  parameters  from  many  small  and  diverse  outbreaks.  By estimating
initial  growth  rates  in  addition  to transmission  rates,  we are  able  to characterize  variation  in  numbers
of  initially  susceptible  individuals  or contact  patterns  between  outbreaks.  With  simulation,  we find  that
the  estimates  are  fairly  robust  to the  data  being  collected  at discrete  intervals  and  imputation  of about
half  of  all  infectious  periods.  We apply  the  method  by  fitting  data  from  75  norovirus  outbreaks  in  health-
care  settings.  Our baseline  regression  estimates  are  0.0037  transmissions  per  infective-susceptible  day,
an  initial  growth  rate  of  0.27  transmissions  per infective  day,  and  a  symptomatic  period  of 3.35  days.
Outbreaks  in  long-term-care  facilities  had  significantly  higher  transmission  and  initial  growth  rates  than
outbreaks  in  hospitals.

© 2014  The  Authors.  Published  by Elsevier  B.V. 

Introduction

A common and difficult problem in epidemiology is to estimate
rates of disease spread. Accurate estimates of these and other pop-
ulation parameters are crucial in the evaluation of disease control
measures (Anderson and May, 1992; Keeling, 2005; Halloran et al.,
2009) or biological hypotheses (Lively, 2010). Heterogeneity com-
plicates the problem of obtaining such estimates. For example, a
person’s risk of infection depends on contact rates and acquired
immunity, and these quantities can vary widely between people
and outbreaks.

Norovirus (NoV) epidemiology provides a fine case in point of
the need for models to accommodate heterogeneity. Noroviruses
are the most common cause of diarrheal disease in the United
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States, causing an estimated 21 million cases (Scallan et al., 2011)
and 71,000 hospitalizations per year (Lopman et al., 2011). A
genetically diverse group of strains is often circulating within a
population. New strains of the predominant genogroup 2 geno-
type 4 (GII.4) taxon appear regularly over time (Glass et al., 2009),
and a person’s risk of infection, given exposure, likely depends
on both the antigenicity of the virus and the type-specific immu-
nity developed from the person’s previous exposure (Cannon et al.,
2009). Other important heterogeneities include innate suscepti-
bility (which depends on a person’s histo-blood group antigens
and secretor status) and age-specific risks of exposure. Out-
break investigations (Evans et al., 2002; Thornley et al., 2011;
Wikswo et al., 2011) have provided convincing evidence that sin-
gle vomiting incidents in crowded settings can lead to scores of
secondary cases. Models that account for both between-individual
and between-population heterogeneity are needed to obtain the
accurate parameter estimates required for predicting outbreak
dynamics and implementing effective controls. At present, con-
trol measures are based on general infection-control principles
(Centers for Disease Control and Prevention, 2011) and thus are
likely to be somewhat inefficient.

A further complication for modeling norovirus transmission
is that it often occurs in small outbreaks. The transmission and
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recovery times of cases in small outbreaks are correlated (Rida,
1991), which makes estimation difficult when using data from a
single outbreak. An obvious solution to reducing the inaccuracy
caused by within-outbreak correlations in data is to base estimates
on data from multiple outbreaks.

Methods  for estimating parameters from multiple outbreaks
have been described before, but often have been developed for
smaller data sets and computing resources than what are now avail-
able. For example, the previous approaches of Becker (1979) and
Becker (1991) assumed only the observation of the final state of
each outbreak was available, used moments estimators, did not
formulate general a regression model to allow for variation in
parameters between outbreaks, and may  be implemented with
pencil and paper. Our norovirus outbreak data set includes the
full observation of a large number of outbreaks and a number of
covariates that are likely to affect parameters. We  thus here employ
a different method that operates on the full observation of out-
breaks, uses maximum-likelihood estimators, models the effect
of covariates on outbreak parameters within a general regression
framework, and exploits modern computing power to find esti-
mates and their confidence intervals.

We propose a general approach to fitting data from many small
outbreaks. Using simulated data, we assessed the performance of
the proposed method as a function of the number of outbreaks
in the data, the rounding of measurements to regular intervals of
observation, the number of missing observations, and the imputa-
tion of missing observations. When the number of outbreaks was
large, we found the performance to be satisfactory for data sets with
realistic levels of all of these challenging features. Fitting our model
to data from a large number of real norovirus outbreaks in health-
care facilities, we found a distinct increase in transmission and
initial growth rates in long-term-care facilities relative to hospitals.
We examined the fit of the model and found the most noticeable
defect to be lower-than-observed prediction of the initial growth
of the outbreaks. However, the predicted dynamics became more
accurate over time such that predictions never deviated widely
from observations.

Methods

We  developed the methods described in this section to fit a
model of the outbreak dynamics of norovirus based on data from a
large survey of gastroenteritis in health-care facilities in the former
County of Avon, England. In this study, the events of symptom
onset and recovery were recorded on a daily basis for cases of gas-
troenteritis in both care staff and patients in 15 hospitals and 135
long-term-care facilities over a year-long period in 2002–2003, and
these events were classified into a total of 271 separate outbreaks
(Lopman et al., 2004b). These outbreaks were for the most part
small; the range in total cases spans from 2 to 90 cases and the
median is 13 cases.

We  begin by presenting our estimation methods. With the
method defined, we then describe assumptions and imputation
procedures used to prepare our data for application of the method.
To complete the model specification for our application, we next
describe the variables of the data chosen to be predictors of how
parameters vary among outbreaks. Finally, we provide details about
methods of simulation, calculation of confidence intervals, and
choice of software.

Model

Although our aim is to introduce a general approach, we aim to
do so by way of example. Thus we describe our methods in terms of
a specific model choice made for the norovirus data. However, we

do provide references to relevant results in the regression literature
to indicate the full scope of this approach.

The states and transition rules for the model we adopt for
individual outbreaks are as follows. The population consists of a
fixed number of people of one or more types. The term type here
identifies people by the rules governing their movement between
different states with respect to norovirus infection. At the begin-
ning of an outbreak, there is some positive number of people in
an exposed, or latent, state for at least one of the types. This state
represents people who  have been exposed to an infection source
and have a latent infection but are not contagious. They move to
an infective state after an incubation period of fixed duration. The
infective state represents contagious people, and for simplicity we
assume that all contagious people are symptomatic. A susceptible
state represents people who are susceptible to infection. Thus each
susceptible of type i moves to the latent state at the first point of a
Poisson process with rate ˇiY(t), where ˇi is the transmission rate
for type-i susceptibles and Y(t) is the number of infectives at time t.
All infective types have the same level of contagiousness and have
gamma-distributed symptomatic periods with the same dispersion
parameter, but the mean symptomatic period may differ between
types. Further, types that represent care staff are moved into an
infective-but-removed state when the time they have spent in the
infective state exceeds a threshold of fixed duration. This transition
rule represents the effect of infection-control policies that prevent
staff from working when contagious. At the end of their symp-
tomatic periods, infective and infective-but-removed people are
moved into a recovered state. The recovered state represents indi-
viduals that gain immunity over the course of the outbreak. The
outbreak ends when the number of infected people reaches zero.

In  summary, our outbreak model is the widely studied
susceptible-exposed-infective-recovered (SEIR) model with four
customizations for our application. First, we  allow people to vary in
susceptibility and expected duration of infectiousness. Second, we
do not make our transmission rate depend on the total number of
people in the population. This departure prevents the need for the
total number of people to be estimated, and it is appropriate in small
populations when an infective person may  be able to infect every
susceptible person in the population with approximately the same
probability. For example, Forrester and Pettitt (2005) did not find
that inclusion of the total population size significantly improved
the fit of a model of methicillin-resistant Staphylococcus aureus
(MRSA) outbreaks within an intensive-care unit. Third, we do not
assume that latent periods and infectious periods are exponentially
distributed. Our approach is more realistic because it allows the
probability of a person leaving a latent or infectious state to depend
on how long she has been in that state. Fourth, we shunt some of
the infectives into an infective-but-removed state to represent the
isolation of contagious staff from the population.

As indicated in our outbreak model description, the rate at which
a susceptible acquires infection from an infective may vary among
members of a population, and we  use the word type in a general
sense to refer to subsets of the population that are assumed to be the
same with respect to such variation. With multiple-outbreak data,
we further define types as unique to individual outbreaks. In other
words, we make no general assumption that people in different
outbreaks may  be modeled with the same parameters. We  shall
later choose a particular linear model that controls the extent to
which parameters may  vary among types, but many other choices
for such models are possible within this framework. Types thus
represent the fundamental unit of variation in this framework, and
the likelihood function naturally breaks apart into factors for each
type.

For each type, the recovery-time and transmission-time parts of
the likelihoods further factor apart into common density functions.
The simplicity of these functions belies an involved construction,



Download English Version:

https://daneshyari.com/en/article/2813584

Download Persian Version:

https://daneshyari.com/article/2813584

Daneshyari.com

https://daneshyari.com/en/article/2813584
https://daneshyari.com/article/2813584
https://daneshyari.com

