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a b s t r a c t

This review focusses on impact of a better knowledge of pathogenic mechanisms of Marfan and related
disorders on their treatment strategies. It was long believed that a structural impairment formed the
basis of Marfan syndrome as deficiency in the structural extracellular matrix component, fibrillin-1 is the
cause of Marfan syndrome. However, the study of Marfan mouse models has revealed the strong
involvement of the transforming growth factor-b signalling pathway in the pathogenesis of Marfan.
Similarly, this pathway was demonstrated to be key in the pathogenesis of Loeys-Dietz and Shprintzen-
Goldberg syndrome. The elucidation of the underlying pathogenic mechanisms has led to new treatment
strategies, targeting the overactive TGF-b pathway. Various clinical trials are currently investigating the
potential new treatment options. A meta-analysis will contribute to a better understanding of the various
trial results.

© 2015 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In 1991, a major scientific breakthrough occurred with the dis-
covery of the molecular basis of Marfan syndrome (MFS). Nearly a
century after the first description of MFS the causal gene was
identified, FBN1, encoding the extracellular matrix protein fibrillin-

1 (Dietz et al., 1991). MFS is an autosomal dominant connective
tissue disorder characterised by the pleiotropic involvement of
several organ systems, including the cardiovascular (aortic aneu-
rysms, mitral valve disease), ocular (ectopia lentis), skeletal (over-
growth, joint laxity) and cutaneous system. Subsequent
development of MFS-mousemodels has provided new insights into
the pathogenesis. One paramount discovery in this respect was the
demonstration of the involvement of transforming growth factor-
beta (TGF-b) signalling dysregulation (Pereira et al., 1999;
Neptune et al., 2003; Habashi et al., 2006). Within the aortic wall
of MFS patients enhanced TGF-b signalling is observed, with both
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the canonical and non-canonical pathways playing a role in the
formation of thoracic aortic aneurysms (TAA) (Neptune et al., 2003;
Holm et al., 2011). The subsequent identification of the MFS-like
condition, called Loeys-Dietz syndrome (LDS), and its molecular
basis with mutations in transforming growth factor beta receptors
1 and 2 (TGFBR1, TGFBR2), transforming growth factor beta ligand 2
and 3 (TGFB2, TGFB3) and Smad family member 3 (SMAD3)
contributing to the disease pathogenesis (Loeys et al., 2005; van de
Laar et al., 2011; Lindsay et al., 2012; Bertoli-Avella et al., 2015),
provided further proof of the involvement of the TGF-b pathway. In
addition, mutations in v-ski avian sarcoma viral oncogene homolog
(SKI), a known inhibitor of TGF-b signalling, cause Shprintzen-
Goldberg syndrome (Doyle et al., 2012) (SGS). The discovery of
the central role of the TGF-b signalling pathway provided new in-
sights into the pathogenesis of these syndromes and new treat-
ment strategies.

2. Transforming growth factor beta signalling paradox

With the discovery of fibrillin-1 being an important regulator of
TGF-b homeostasis (Isogai et al., 2003; Chaudhry et al., 2007), it
became clear that TGF-b signalling is involved in the pathogenesis
of numerous connective tissue disorders. Fibrillin-1 is part of
extracellular matrix (ECM) microfibrils, that interact with elastin,
collagen and other ECM components. Besides its structural func-
tion, fibrillin-1 binds the latent transforming growth factor binding
protein (LTBP), targeting the large latent complex (LLC) to the ECM.
This interaction regulates the sequestration of TGF-b and thus the
bioavailability of the TGF-b ligand. Mutations in the FBN1 gene lead
to fibrillin-1 deficiency and also affect the targeting of the large
latent complexes. An uncontrolled release of TGF-b is observed in
FBN1 deficient mice (Neptune et al., 2003; Franken et al., 2013).
Subsequently, an upregulation of the TGF-b pathway was

confirmed in the aortic wall of Marfan patients. Under normal cir-
cumstances, TGF-b ligand is released from the LLC and will bind to
the serine/threonine protein kinase receptors, TGFBRI and TGFBRII.
First, active TGF-b binds to a TGFBRII dimer orchestrating the as-
sembly and subsequent transphosphorylation of TGFBRI, resulting
in the downstream canonical signalling cascade. Receptor-
regulated SMADs (R-SMADs; SMAD2 or SMAD3) are recruited and
phosphorylated, which in turn form a complex with SMAD4. After
translocation of the SMAD4/R-SMAD complex to the nucleus,
transcription of TGF-b target genes is initiated (Shi and Massague,
2003). SKI protein induces a negative feedback loop of the TGF-b
pathway by binding to the SMAD4/R-SMAD complex, preventing
nuclear translocation and TGF-b target gene transcription (Fig. 1).

This signalling process is interrupted when loss-of-function
mutations occur in different components of the TGFb pathway. In
LDS, mutations in the genes coding for the TGF-b ligands (TGFB2,
TGFB3), receptors (TGFBR1, TGFBR2) or the intracellular down-
stream effector (SMAD3) are involved. Mutations in these genes
were all shown to cause loss-of-function (Loeys et al., 2005; van de
Laar et al., 2011; Boileau et al., 2012; Lindsay et al., 2012; Bertoli-
Avella et al., 2015). Paradoxically, these genetic loss-of-function
mutations result in an increase of TGF-b signalling, as demon-
strated by elevated levels of phosphorylated SMAD2, ERK1/2, TGF-b
target genes such as CTGF (Connective Tissue Growth Factor) and
increased TGFb1 levels in aortic wall tissue of patients (Loeys et al.,
2005; Boileau et al., 2012; Lindsay et al., 2012; Bertoli-Avella et al.,
2015). The SKImutations in SGS specifically disrupt the SKI domain
that interacts with the SMAD4/R-SMAD complex and affect the
recruitment of transcriptional corepressors. As expected with the
loss of an inhibitor, we observe enhancement of TGF-b signalling in
fibroblasts from SGS patients (Doyle et al., 2012) (Fig. 1).

Several mechanisms have been proposed to explain the para-
doxical increase in TGFb signalling despite of the apparent loss-of-

Fig. 1. TGF-b signalling via canonical and non-canonical pathways. The defective components of the pathway are indicated with a red cross and the corresponding diseases are
specified with a red arrow. Deficiencies in the structural ECM component, fibrillin-1, lead to an uncontrolled release of the TGF-b ligands 1,2 or 3. Ultimately resulting in an
upregulation of both the canonical and non-canonical pathway and thus an overexpression of the TGF-b target genes. In LDS, mutations occur at the level of the TGF-b ligands,
receptors or effectors, resulting in a paradoxical increase of both downstream pathways. This enhancement is also observed in SGS, in which loss-of-function mutations occur in the
proto-oncogene SKI. The proto-oncoproteins ski and sno normally induces a negative feedback loop of the pathway by interacting with the Smad2/3-Smad4 complex. CTGF:
connective tissue growth factor; TIMP-1: tissue inhibitor of metalloproteinase 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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