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Hepatocellular carcinoma (HCC) is a highly heterogeneous disease and the development of targeted therapeutics
is still at an early stage. The ‘omics’ based genome-wide profiling comprising the transcriptome, miRNome and
proteome are highly useful in identifying the deregulatedmolecular processes involved in hepatocarcinogenesis.
One of the end products and processes of the central dogma being the metabolites and metabolic processes
mediate the cellular functions. In recent years, metabolomics based investigations have revealed the major
deregulated metabolic processes involved in carcinogenesis. However, the integrative analysis of the holistic
metabolic processes with genomics is at an early stage. Since the gene-sets are highly useful in assessing the
biological processes and pathways, we made an attempt to infer the deregulated cellular metabolic processes
involved in HCC by employingmetabolism associated gene-set enrichment analysis. Further, themetabolic process
enrichment scores were integratedwith the transcriptome profiles of HCC. Integrative analysis shows three distinct
metabolic deregulations: i) hepatocyte function related molecular processes involving lipid/fatty acid/bile acid
synthesis, ii) inflammatory processes with cytokine, sphingolipid & chondriotin sulphate metabolism and iii)
enriched nucleotide metabolic process involving purine/pyrimidine & glucose mediated catabolic process, in
hepatocarcinogenesis. The three distinctmetabolic processeswere found to occur both in tumor and liver cancer
cell line profiles. Unsupervised hierarchical clustering of the metabolic processes along with clinical sample
information has identified twomajor clusters based onAFP (alpha-fetoprotein) andmetastasis. The study reveals
the three major regulatory processes involved in HCC stages.
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1. Introduction

Hepatocellular carcinoma (HCC) is the sixth most common cancer
and second deadly cancer (Ferlay et al., 2015). HCC incidence is steadily
rising and is endemic in Asia and Africa (Bosch et al., 2005; El-Serag,
2011). Only 40% of HCC patients are diagnosed at early stage and curative
options such as liver transplantation or surgical resections are difficult for
the patients diagnosed at late stage. This is due to the lack of proper
screening platforms (Bruix and Llovet, 2002; Singal et al., 2013).
Nevertheless, complete understanding and better characterization
of the regulatory processes involved in liver tumorigenesis need to
be investigated in unveiling the heterogeneous and complex nature
of HCC (Lachenmayer et al., 2012; Ramakrishna et al., 2013). This
warrants the need for a comprehensive cellular, molecular and functional

genomic characterization of the processes in liver cancer for improved
early diagnosis and to develop targeted therapeutics.

While the genomics approaches have advanced the understanding
of the molecular processes in various cancers (Zender et al., 2006;
Furge et al., 2007; Mattison et al., 2010), the unanswered questions in
cancer biology can be answered by integrating the genomics and meta-
bolomics as the metabolites are the end products and intermediates of
cellular processes (Idle and Gonzalez, 2007). Thus, metabolomics
in-hand with genomics might bridge the gap of genotype–phenotype
relations in systems biology (Goodacre, 2005). Recent evidences show
that metabolic pathways are good targets in cancer since the cancer
cells have the altered metabolic flux and metabolism (Tennant et al.,
2010). Glycolysis, pentose phosphate pathway, TCA and urea cycle are
some of the pathways altered in colon and stomach cancers
(Hirayama et al., 2009). Metabolomic signatures also have been derived
from pancreatic and hepatocellular cancer cell lines for evaluating the
anti-proliferative and anti-apoptotic effects of belinostat and bortezomib
(Spratlin et al., 2011; Palmnas and Vogel, 2013). Thus, metabolomics are
useful approaches in understanding the biological and clinical status
and to use the information to develop screening platform for the diagno-
sis and aiding better therapeutic options for cancer patients. However, the
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studies on metabolomics are still in their infancy as the experimentation
and the results are known to have high variation and also due to
the conditions of metabolite extraction and their half-life (Koal and
Deigner, 2010; Koek et al., 2011).

In recent years, gene-sets are highly useful in predicting the status of
the signaling pathways and various biological, functional and regulatory
processes in tumors (Ooi et al., 2009, 2011; Muthuswami et al., 2013;
Tamilzhalagan et al., 2015). As an attempt to establish the approach
bridging the gap between transcriptome&metabolome, the dysregulated
metabolic processeswere inferred from themRNAprofiles of liver tumors
and liver cancer cell lines using gene-sets. The major deregulated
metabolic processes in different sub-types of HCC were identified
from this integrative functional genomic analysis of transcriptome
and metabolic processes.

2. Materials and methods

2.1. Metabolic gene-sets and HCC profiles

In total, 445 metabolic process gene-sets related to metabolic,
biochemical and enzymatic reactions were collected from Molecular
Signature Database v4.0 (Subramanian et al., 2005). The collected
metabolism associated gene-sets collectively represent different
metabolisms of lipid, fatty acid, steroid, bile, carbohydrate, amine,
amino acid, protein, acid, drug, hormone, nitrogen, nucleotide, cell
cycle mediating, macromolecular/biopolymer, enzymatic activity,
co-enzyme/co-factor, vitamin, alcohol, aromatic, organic, inorganic
and acyl chain. The details of the collected gene-sets and their metabolic
process category are provided in Supplementary Table 1. Gene expression
profiles of HCC and non-tumors were obtained from Gene Expression
Omnibus (GEO). From GSE14520 profile, 225 tumors and 220 non-
tumor samples profiled with Affymetrix platform HT_HG-U133A alone
were used for the analysis. The profile has the sample information for
AFP and ALP levels, staging systems (CLIP, BCLC and TNM) andmetastasis
risk status. Gene expression profile of 20 liver cancer cell lines from GEO,
GSE35818 profiled with AgilentWhole Human Genome 4x44 K platform
was also used. The cell lines include well differentiated (HEPG2, HEP3B,
PLC/PRF/5, HUH1, HUH7, JHH5 & JHH7) and poorly differentiated (JHH1,
JHH2, JHH4, JHH6, HLE, HLF, SK HEP1, SNU-182, SNU-387, SNU-398,
SNU-423, SNU-449 and SNU-475) cell lines. Gene expression profile of
primary HCC profiled by RNA-Seq was obtained from TCGA (The Cancer
Genome Atlas). The profile contains 371 HCC and 50 non-tumor tissues
profiled with IlluminaHiSeq_RNASeqV2 platform.

2.2. Metabolic process enrichment analysis

TheMAS5.0 intensity of theprobes in the expressionprofile GSE14520
was averaged for the replicate genes. In the case of GSE35818, log10
normalized intensity profile was converted to numerical ratio value and
averaged the replicate genes. Gene normalized count was used for TCGA
profile samples. For the Z-score based enrichment analysis of HCC
samples, non-tumor tissues were available to use as reference. However,
the gene expression profile of 20 liver cancer cell lines (GSE35818) does
not possess normal cell lines for the analysis. The microarray platform of
the profile was Agilent dual channel array platform. Here, the reference
was a mix of equal amounts of RNA from 19 liver cancer cell lines with
the exception of JHH1. Since the reference was itself a mixture of equal
amounts of RNA from 19 liver cancer cell lines, the median of the profile
was considered as reference. The obtained series matrix file is ratio
of Cy5/Cy3 representing test cell line/19 liver cancer cell line mix for all
the genes. Therefore, the expression value (Cy5/Cy3) was considered as
such for the Z-score calculation in enrichment analysis.

For each gene, fold expression of the tumor samples was calculated
with respect to the average of non-tumor tissues as reference. Mean
fold expression and standard deviation in fold expression of each sample
in thewhole gene expression profilewere calculated. Similarly,mean fold

expression value of the metabolic process gene-sets of each tumor and
cell line samples was calculated by extracting the fold gene expression
value of gene-sets from the respective profiles. The metabolic process
enrichment score, Z-score was calculated by subtracting the mean fold
expression of thewhole expression profile from themean fold expression
of the gene-sets and divided by standard deviation in fold expression of
the profile. Finally, the obtained value was multiplied with the square
root of the number of genes in the metabolic process gene-set to attain
the normalized Z-score value (Levine et al., 2006). Cumulative expression
of mRNAmodules was also calculated by the same approach in cell lines.
The detailed method of deriving gene-set enrichment score (Z-score) is
provided in Supplementary Method 1.

2.3. Unsupervised hierarchical clustering of Z-score based metabolic
process enrichment

The derived 445 or selected metabolic processes related gene-set
enrichment scores of HCC samples or cell lines were used as input in
dChip software. Further, the clinical information of the samples such
as AFP levels, metastasis risk, TNM, BCLC & CLIP staging information of
tumors and differentiation status of cell lines was also uploaded along
with the metabolic process related gene-set scores. Unsupervised
hierarchical clustering analysis was performed with the Z-scores of
metabolic processes and clinical information of the samples in dChip.
The clustering parameters include the average linkage type, mean
standardized with display range from −2 to +2 and 1-correlation as
the distance metric. The sample clustering p-value was set b0.01. The
unsupervised hierarchical clustering was visualized as heatmap with
clusters of samples and metabolic process related gene-sets in dChip
(Li and Wong, 2001).

2.4. Construction of the integrative network that connects mRNA modular
expression and metabolic gene-set enrichment

A ‘signed’ co-expression basedmRNAnetworkwas constructedwith
differentially expressed genes between tumor (n= 225) and non-tumor
samples (n= 220) of the tumor profile GSE14520, profiled with HT_HG-
U133A platform to understand the role of signaling pathways in HCC
development (Vignesh and Kumaresan, unpublished). The network
has identified 10mRNAmodules (co-expressed gene clusters). Func-
tional, clinical and signaling pathway association of the mRNA mod-
ules has identified three categories of modules: i) hepatocyte (LD1),
ii) inflammatory-stress (LD5–LD10) and iii) proliferative (LD2 &
LD3) modules. Since modules consist of varying numbers of genes,
the summarized expression of the genes in a module is specified as
module eigengene value (Langfelder and Horvath, 2007). Correlations
between eigengene expression of mRNA modules and the metabolic
gene-set enrichment scores were derived using the inbuilt module-
trait association matrix of WGCNA (Weighted Gene Co-expression
Network Analysis) which provides Pearson's correlation value and
significance values (Langfelder and Horvath, 2007). Significant pairs of
mRNA modules and metabolic processes were considered based on the
correlation between the modular eigengene values and metabolic gene-
set enrichment scores. Interaction network was constructed for the
modules with metabolic gene-sets based on the correlation values
r b −0.3 & r N +0.3 with a p-value of b0.05. The correlation threshold
of r b −0.3 & r N +0.3 value was set based on the previous study
(Mukaka, 2012). The network was visualized using VisANT software
(Hu et al., 2004).

2.5. Statistical analysis

The differentially activatedmetabolic gene-sets between the well and
poorly differentiated cell lines were analyzed by employing two-tailed
Student's t-test and significance was considered with a p-value b0.05.
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