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Sumoylation is a multifunctional post-translation modification (PTM) in proteins by the small ubiquitin-related
modifiers (SUMOs), which have relations to ubiquitin in molecular structure. Sumoylation has been found to be
involved in some cellular processes. It is very significant to identify the exact sumoylation sites in proteins for not
only basic researches but also drug developments. Comparing with time exhausting experiment methods, it is
highly desired to develop computational methods for prediction of sumoylation sites as a complement to
experiment in the post-genomic age. In this work, three feature constructions (AAIndex, position-specific
amino acid propensity andmodification of composition of k-space amino acid pairs) and five different combina-
tions of themwere used to construct features. At last, 178 features were selected as the optimal features accord-
ing to the Mathew's correlation coefficient values in 10-fold cross validation based on linear discriminant
analysis. In 10-fold cross-validation on the benchmark dataset, the accuracy andMathew's correlation coefficient
were 86.92% and 0.6845. Comparing with those existing predictors, SUMO_LDA showed its better performance.

© 2015 Published by Elsevier B.V.

1. Introduction

Protein sumoylation is an essential post-translational modification
(PTM) in proteins by the small ubiquitin-related modifiers (SUMOs).
It plays an important role in protein activities, including subcellular
transport, transcription, DNA repair and signal transduction (Hay,
2005; Kroetz, 2005; Seeler and Dejean, 2003). It has been found that
CTD SUMOylation promotes protein binding and Claspin is one of the
SUMOylation-dependent binding proteins. Claspin localizes to the mi-
totic centromeres depending on mitotic SUMOylation (Ryu et al.,
2015). Sumoylation is also discovered to be involved in various diseases
and disorders (Dorval and Fraser, 2007; Seeler et al., 2007; Li et al.,
2005), especially neural diseases (Shinbo et al., 2006; Dorval and
Fraser, 2006), such as Alzheimer's disease and Parkinson's disease.
Hence, identifying sumoylation sites in proteins is significant for not
only basic researches but also drug developments.

SUMO proteins are highly conserved across eukaryote (Weissman,
2001) including budding yeast, nematodes and vertebrate cells. Identifi-
cation of sumoylation sites with experimental approaches is significantly

limited, labor-intensive and time-consuming for its reversibility and in-
stability. As a complement to experimental methods it is highly desired
to develop computational methods to predict potential sumoylation
sites.

Some computational methods have been proposed. For instance,
Xue and his co-works designed convenient online tools SUMOsp 1.0
(Xue et al., 2006), SUMOsp 2.0 (Ren et al., 2009) and GPS-SUMO
(Zhao et al., 2014) based on group-based phosphorylation scoring algo-
rithm. SUMOpre (Xu et al., 2008) based on multiple linear regression
and SUMOhydro (Chen et al., 2012) based on the support vector
machine were developed by Xu et al. and Chen et al., respectively.
Each predictor has its own merits and supplied contributions to the
identification of sumoylation sites. In this work, we employed linear
discriminant analysis in sumoylation site prediction, which was more
rapid and efficient. Features were constructed through integrating
physicochemical properties and sequence conservation. The optimal
178 features were selected according to the Mathew's correlation co-
efficient value in 10-fold cross-validation.

To develop a predictor based on the sequence information, some
basic procedures summarized in Chou (2011) should be considered.
(i) Construct or select a benchmark dataset to train and test the predic-
tor. (ii) Formulate the protein sequence samples with feature vectors
that can truly reflect the correlation with the target to be prediction.
(iii) Introduce or develop a useful algorithm (or engine) to operate
the prediction. (iv) Perform cross-validation tests to evaluate the per-
formance of the predictor.

Gene 576 (2016) 99–104

Abbreviations:PTM, post-translationalmodification; LDA, linear discriminant analysis;
PSSM, position specific scoring matrix; PSPM, position-specific propensity matrices;
CKSAAP, the composition of k-space amino acid pair; F-score, feature score.
⁎ Corresponding author.

E-mail address: llm5609@163.com (L.-M. Liu).

http://dx.doi.org/10.1016/j.gene.2015.09.072
0378-1119/© 2015 Published by Elsevier B.V.

Contents lists available at ScienceDirect

Gene

j ourna l homepage: www.e lsev ie r .com/ locate /gene

http://crossmark.crossref.org/dialog/?doi=10.1016/j.gene.2015.09.072&domain=pdf
http://dx.doi.org/10.1016/j.gene.2015.09.072
mailto:llm5609@163.com
http://dx.doi.org/10.1016/j.gene.2015.09.072
http://www.sciencedirect.com/science/journal/03781119


2. Materials and methods

2.1. Benchmark dataset

The training data used in this work were derived from Jian Ren's
article (Zhao et al., 2014). There were 912 sumoylation sites from 510
proteins. The complete sequences of these proteins were derived from
the UniProt (release 2015_07, http://www.uniprot.org/), a database
including abundant information of protein biological functions from
articles. For every lysine (K) amino acid, the correspondingpeptide frag-
ments were generally formulated by

P ¼ R−ξR− ξ−1ð Þ⋯R−2R−1KRþ1Rþ2⋯Rþ η−1ð ÞRþη ð1Þ

where the subscripts ξ and η were integers, R−ξwas the ξ-th upstream
amino acid residue from lysine (K), while the Rη the η-th downstream
amino acid residue, and so forth. Hereafter, a peptide was defined as
SUMO peptide or non-SUMO peptide if its center K was a sumoylation
or non-sumoylation site, that is

P∈ SUMO; K was sumoylation site
non‐SUMO; otherwise

�
ð2Þ

Consequently, ξ=η=10 were chosen through some trials. When
the upstream or downstream in a protein was less than 10, the lacking
residues would be filled with the dummy code X. For convenient de-
scription, we rewrote Eq. (1) as

P ¼ R1R2⋯R10R11R12⋯R20R21 ð3Þ

where the R11 was the center K, Ri(i=1,2, ⋯ , 21, i≠11) was any
amino acid at the i-th position. To avoid homology bias, we got 753 pep-
tides inwhichnonehad ≥40%pairwise sequence identity to any other. A
total of 753 experimentally verified sumoylation and 4518 non-
sumoylation sites were derived. Based on large numbers of experi-
ments, the performance was the best when the non-SUMO peptide
number was 4518, which was six times of the SUMO ones. The bench-
mark dataset S was constituted of

S ¼ Sþ þ S− ð4Þ

where the positive dataset Sþ contained N+=753 SUMO peptides and
the negative dataset S− contained N−=4518 non-SUMO peptides,
respectively.

2.2. Sample formulation or feature vector

One of the keys to develop a sequence-based computational predic-
tor is to effectively represent its sequences asmathematical expressions
(feature construction), which can reflect the intrinsic correlation with
the attribute to be predicted (Chou, 2009). There were a variety of fea-
ture constructions such as BLOSUM62 matrix (Henikoff and Henikoff,
1992), PSSM (position specific scoring matrix) (Guo et al., 2004; Ding
et al., 2014), PSPM (position-specific propensity matrices) (Xu et al.,
2014), CKSAAP (the composition of k-space amino acid pair) (Chen
et al., 2007, 2008) and so on, which were widely used and showed
their effective performance. In this work, three feature construction ap-
proaches andfive different combinations of themwere utilized to repre-
sent peptide fragments into mathematical expressions.

2.2.1. AAIndex
Each amino acid has its own specific physicochemical and biologic

properties which have direct or indirect effects on protein properties.
Different combinations of those properties can also influence structures
and functions of proteins. AAIndex (Kawashima et al., 2008) is a data-
base which contains various physicochemical and biologic properties
of amino acids. Several combinations of physicochemical properties

have been adopted to transform sequence fragments intomathematical
expressions, which have shown efficient effects in (Zhao et al., 2013). 14
properties were selected from AAIndex database, including hydropho-
bicity, polarity, polarizability, solvent, accessible, net charge index of
side chains, molecular weight, PK-N, PK-C, melting point, optical rota-
tion, entropy of formation, heat capacity and absolute entropy. For the
dummy amino acid X, it was defined 0 as its physicochemical property
value. Therefore, each amino acid was constructed into 14 features
through AAIndex database. For a peptide fragment, a 294-D(14×21=
294) feature vector was obtained through AAIndex database.

2.2.2. PSAAP (position-specific amino acid propensity)
The PSAAP (position-specific amino acid propensity) (Tang et al.,

2007) has shown its good performance in Xu et al. (2013). The main
idea of PSAAP was to indicate the occurrence frequency of each amino
acid appeared on each position.

We used the numerical code 1, 2, 3,…, 20 to represent the 20 native
amino acids according to the alphabetic order of their single letter code,
and use 21 to represent the dummy amino acid X.We calculated the fol-
lowing 21×21 Position Specific Amino Acid Propensity (PSAAP) matrix

Z ¼
z1;1 z1;2 ⋯ z1;21
z2;1 z2;2 ⋯ z2;21
⋮ ⋮ ⋱ ⋮

z21;1 z21;2 ⋯ z21;21

2
664

3
775 ð5Þ

where the column corresponded to the position in Eq. (3) and the row
corresponded to the amino acid index, respectively. The elements
were calculated by

zi; j ¼ scoreþ i; jð Þ−score− i; jð Þ i ¼ 1;2;⋯;21; j ¼ 1;2;⋯;21ð Þ ð6Þ

where score+(i, j) was the occurrence frequency of the i-th amino acid
(i=1,2,⋯ ,21) at the j-th column (j=1,2,⋯ ,21) which was derived
from the positive benchmark dataset Sþ, score−(i, j) was the occurrence
frequency of the i-th amino acid (i=1,2,⋯ ,21) at the j-th column (j=
1,2,⋯ ,21)whichwas derived from the negative benchmark datasetS−.
By the propensity matrix Z, the feature vector corresponding to Eq. (3)
was formulated as

P ¼ ψ1 ψ2⋯ψu⋯ψ21½ �T ð7Þ

where ψu(u=1,2,⋯ ,21) was uniquely defined by

ψu ¼

z1;u when Ru ¼ A
z2;u when Ru ¼ C
⋮ ⋮

z20;u when Ru ¼ Y
z21;u when Ru ¼ X

8>>>><
>>>>:

u ¼ 1;2;⋯;21ð Þ ð8Þ

where Ru was any amino acid at the u-th position in Eq. (3).

2.2.3. MCKSAAP (modification of composition of k-space amino acid pair)
The composition of k-space amino acid pair (CKSAAP) has been suc-

cessfully used in predicting mucin type O-glycosylation sites in mam-
malian (Chen et al., 2007, 2008) and palmitoylation sites (Wang et al.,
2009). It can be easily seen that feature vectors formulated by CKSAAP
were high dimension and spare. Inspired by PSAAP (position-specific
amino acid propensity), modification of composition of k-space amino
acid pair (MCKSAAP) was constructed which took the position specific-
ity into consideration to reduce the dimensions. The main idea of
MCKSAAP was to indicate the occurrence frequencies of amino acids
pairs at different positions, which was inspired by PSAAP method.
There were 21 amino acids including the dummy amino acid X and
the number of the possible dipeptides was 21×21=441.
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