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L-DOPA decarboxylase (DDC) is a multiply-regulated gene which encodes the enzyme that catalyzes the
biosynthesis of dopamine in humans. MicroRNAs comprise a novel class of endogenously transcribed small
RNAs that can post-transcriptionally regulate the expression of various genes. Given that the mechanism of
microRNA target recognition remains elusive, several genes, including DDC, have not yet been identified as
microRNA targets. Nevertheless, a number of specifically designed bioinformatic algorithms provide candidate
miRNAs for almost every gene, but still their results exhibit moderate accuracy and should be experimentally
validated. Motivated by the above, we herein sought to discover a microRNA that regulates DDC expression. By
using the current algorithms according to bibliographic recommendations we found that miR-145 could be
predicted with high specificity as a candidate regulatory microRNA for DDC expression. Thus, a validation
experiment followed by firstly transfecting an appropriate cell culture systemwith a syntheticmiR-145 sequence
and sequentially assessing the mRNA and protein levels of DDC via real-time PCR and Western blotting,
respectively. Our analysis revealed thatmiR-145 had no significant impact on protein levels of DDC butmanaged
to dramatically downregulate its mRNA expression. Overall, the experimental and bioinformatic analysis
conducted herein indicate that miR-145 has the ability to regulate DDC mRNA expression and potentially this
occurs by recognizing its mRNA as a target.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

L-DOPAdecarboxylase (DDC)was thefirst decarboxylasewhich pres-
encewas experimentally confirmed inmammals in the late 1930s (Holtz
et al., 1938). Since then, DDChas been detected in several tissues of these
organisms indicating a potential implication of this enzyme in various
biological processes (Zhu and Juorio, 1995). In humans, DDC has been
isolated and biochemically characterized as the enzyme that is responsi-
ble for the conversion of L-3,4-dihydroxyphenylalanine (L-DOPA) to
dopamine, and putatively for this of 5-hydroxytryptophan (5-HTP) to
serotonin (Mappouras et al., 1990). Human DDC can be subjected
to multiple regulatory mechanisms at various levels. Similar to data
emerged from studies in insects (Poulikakos et al., 2002) and rodents
(Poulikakos et al., 2001) human DDC can be either targeted in the
membranes or found in the cytosol of the cells (Chalatsa et al., 2011).
In parallel, its enzymatic activity has proven to be affected by various
factors, including specific inhibitors (Vassiliou et al., 2009). Likewise,

the expression of DDC can be widely regulated in human cells. Two
different alternative transcripts that share the same coding region but
differ in the largest part of their 5′-untranslated region (UTR) have
been reported to encode the full-length isoform of DDC that consists
of 480 amino acids (Ichinose et al., 1992). Alternative usage of two
distinct promoters located to the 5′ flanking region of two alternative
exons 1 has been found to be responsible for the generation of the
aforementioned transcripts (Ichinose et al., 1992). Alternative splicing
may also occur within the coding region of DDC, as one transcript that
lacks exon 3 sequence (O'Malley et al., 1995) and another one that
lacks the corresponding sequences of exons 10–15 including though
that of an alternative exon 10 (Vassilacopoulou et al., 2004) have been
likewise detected. Furthermore, the mRNA levels of DDC seem to be
also subjected to strict regulation, as relative aberrations have been cor-
related with various types of cancer (Kontos et al., 2010; Koutalellis
et al., 2012).

A landmark event that recently occurred in the field of molecular
biology was the discovery of microRNAs (miRNAs). miRNAs comprise
a class of small non-coding RNAs that are endogenously transcribed
and subsequently loaded onto the RNA-induced silencing complex
(RISC). The latter is a ribonucleoprotein complex, where miRNAs
function as the guide molecules that lead RISC to specific mRNAs,
which constitute their targets (Ha and Kim, 2014). The number of the
potential mRNA-targets for a given miRNA may exceed 100 and vice
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versa (Krek et al., 2005). miRNAs seek their targets by mainly scanning
the 3′-UTR of the mRNAs for complementary sequences. Once they
find their targets they induce either repression of translation or
deadenylation and sequentially decay of the mRNA, whereas recent
studies claim that the above mechanisms might also occur simulta-
neously (Meijer et al., 2013; Guo et al., 2010; Hu and Coller, 2012).
The precise rules that govern this interaction have not been elucidated
yet, as miRNAs show partial or even limited complementarity with
their targets. Remarkably, the majority of the verified miRNA–mRNA
interactions exhibit perfect base-pairing only in the region that corre-
sponds to the nucleotides 2 to 8 of the 5′-end of the miRNA, which is
known as the seed region. Few mismatches in this site have been also
reported though, but they are usually compensated by the 3′-end of
the miRNA sequence which partially hybridizes with the target-
sequence in this case (Pasquinelli, 2012).

Overall, the above situation raised a lot of practical difficulties
regarding the identification of miRNA targets. Nonetheless, researchers
tried to resolve this issue by developing sophisticated computational
tools that predict candidate targets for miRNAs and adequate experi-
mental methodologies that can test the validity of these predictions
(Thomson et al., 2011; Kuhn et al., 2008). From a computational
perspective, the bioinformatic tools used in miRNA target prediction
are divided into the ab initio and the machine learning algorithms
(Reyes-Herrera and Ficarra, 2012). Although their design is based on
the same principles, these tools differ in the workflow that has been
followed for the generation of a scoring system which determines
whether a miRNA–mRNA reaction could truly occur or not (Yousef
et al., 2009; Yue et al., 2009). In computational science, this represents
a binary classification problem usually addressed by applying the pro-
cess of supervised learning (Yousef et al., 2009). The latter involves
the implementation of a process called training of the algorithm
which can be achieved with the assistance of a data set demonstrating
an under-investigation feature. The aim of supervised learning is to
determine via statistical analysis the distribution of specific parameters
considered to be responsible for the generation of the desired feature
within the training data set and accordingly produce an inferred
function that could be used for predicting the behavior of unknown
data regarding the same feature (Yue et al., 2009). In ab initio
algorithms, the training data consist of a set of miRNAs along with
their experimentally validated targets. These interactions are carefully
examined in silico by the designer of the algorithm who is responsible
for the production of the inferred function. On the contrary, machine
learning algorithms require two training sets; a positive that consists
of sets of miRNAs and verified targets, and a negative which includes
unfavored miRNA–mRNA interactions, usually assessed by experimen-
tal data. The role of the algorithm designer in this case is limited to

the selection of the parameters that will be assessed by the program,
which automatically estimates the validity of each one and proceeds
to the development of the evaluation formula. Ab initio algorithms
appeared before their machine learning counterparts. The main param-
eters evaluated in ab initio algorithms are the complementarity in seed
region, the thermodynamic stability of the reaction and the conserva-
tion of target-sequence. Machine learning algorithms also examine
the first two parameters, as well as multiple structural features of the
interacting sequences, but do not usually evaluate conservation
(Reyes-Herrera and Ficarra, 2012; Yousef et al., 2009; Yue et al., 2009).

So far none of the known miRNAs has been found to recognize DDC
as a target. Thus, the goal of this study was to take advantage of the
already existing tools and develop a workflow which could lead us to
the discovery of amiRNA that exerts regulatory action onDDC expression.

2. Materials and methods

2.1. Bioinformatic tools

The open accessweb-based databases of the experimentally validat-
ed miRNA targets, miRecords (http://mirecords.biolead.org/) (Xiao
et al., 2009) and TarBase (http://diana.imis.athena-innovation.gr/
DianaTools/index.php?r=tarbase/index) (Vergoulis et al., 2012) plus
17 miRNA target prediction algorithms (Table 1) were accessed during
this study. All algorithms were used either by applying their default
parameters or by accessing the pre-created lists of predictions provided
in their websites.

2.2. Cell culture

The prostate cancer cell line LNCaP was cultured in a humidified in-
cubator at 37 °C and under 5% CO2, using RPMI 1640 (PAA Laboratories,
Pasching, Austria), supplemented with 10% fetal bovine serum (FBS),
100 kU/L penicillin, and 0.1 g/L streptomycin as a culture medium.

2.3. RNA transfection

A synthetic sequence of human miR-145 (Dharmacon, Lafayette,
CO) was transfected into LNCaP cells by using the X-tremeGENE siRNA
Transfection Reagent (Roche, Mannheim, Germany) according to the
manufacturer's instructions. The process was executed in 6-well plates,
where LNCaP cells were seeded in a density of 105 cells/cm2. Prior to
transfection, LNCaP cells were left inside the incubator for 24 h in
order to adhere to the culture vessel and adapt to the culture environ-
ment. The final concentration of the synthetic miRNA added to the cul-
ture medium was adjusted to 100 nM. According to manufacturer's

Table 1
Human microRNA target prediction algorithms.

Algorithm Website Reference

DIANA-microT-ANN http://diana.cslab.ece.ntua.gr/DianaTools/index.php?r=microtv4/index Reczko et al. (2012)
EIMMo http://www.mirz.unibas.ch/ElMMo2/ Gaidatzis et al. (2007)
GenMiR++ http://www.psi.toronto.edu/genmir/ Huang et al. (2007)
MicroInspector http://mirna.imbb.forth.gr/microinspector/ Rusinov et al. (2005)
MiRanda-mirSVR http://www.microrna.org/microrna/getGeneForm.do Betel et al. (2010)
miREE http://didattica-online.polito.it/eda/miREE/ Reyes-Herrera et al. (2011)
MiTarget2-miRDB http://mirdb.org/miRDB/ Wang and El Naqa (2008)
PicTar http://pictar.mdc-berlin.de/ Krek et al. (2005)
PITA http://genie.weizmann.ac.il/pubs/mir07/index.html Kertesz et al. (2007)
RepTar http://bioinformatics.ekmd.huji.ac.il/reptar/ Elefant et al. (2011)
RNA22 https://cm.jefferson.edu/rna22v2.0/ Miranda et al. (2006)
RNAhybrid http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/ Krüger and Rehmsmeier (2006)
STarMir http://sfold.wadsworth.org/cgi-bin/starmir.pl Long et al. (2008)
SVmicro http://compgenomics.utsa.edu/svmicro.html Liu et al. (2010)
TargetMiner http://www.isical.ac.in/~bioinfo_miu/targetminer20.htm Bandyopadhyay and Mitra (2009)
TargetScanHuman http://www.targetscan.org/ Garcia et al. (2011)
TargetSpy http://www.targetspy.org/ Sturm et al. (2010)
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