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The analysis of allele-specific gene expression (ASE) is essential for the mapping of genetic variants that affect
gene regulation, and for the identification of alleles that modify disease risk. Although RNA sequencing offers
the opportunity to measure expression at allele levels, the availability of powerful statistical methods for map-
ping ASE in single or multiple individuals is limited. We developed a maximum likelihoodmodel to characterize
ASE in the human genome. Approximately 17% of genes displayed an allele-specific effect on gene expression in a
single individual. Simulations using our model gave a better performance and improved robustness when com-
pared with the binomial test, with different coverage levels, allelic expression fractions and random noise. In ad-
dition, our method can identify ASE in multiple individuals, with enhanced performance. This is helpful in
understanding the mechanism of genetic regulation leading to expression changes, alternative splicing variants
and even disease susceptibility.

Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

Allele-specific gene expression (ASE) is the representation of the
two alleles of a given gene in the corresponding mRNA. Normal devel-
opment and cellular processes require the ratio of expression of the
two alleles to be different from the allelic representation in genomic
DNA (50:50). However, the precise mechanisms by which allele-
specific gene expression occurs are not yet understood and there may
be multiple mechanisms. Studies of expression quantitative trait loci
(eQTLs) have shown that ASE usually reflects cis-acting genetic poly-
morphisms (Stranger et al., 2007), whereas trans-genetic regulatory
or epigenetic mechanisms are relatively rare (Stranger et al., 2005;
Zeller et al., 2010). It is generally believed that cis-regulatory polymor-
phism is the primary source of phenotypic difference and is associated
with many diseases. The functional cis-regulatory variation can be

mapped by measurement of ASE, using statistical or experimental
approaches (Campino et al., 2008; Pastinen et al., 2005; Serre et al.,
2008; Verlaan et al., 2009). In addition, althoughmonoallelic expression
is relatively rare, epigenetic mechanisms of allelic expression, such as
imprinted genes, can also be detected by measuring ASE (Babak et al.,
2008).

Theprecise identification of ASE genes has been the focus ofmuchat-
tention. Studies using the Illumina Allele-Specific Expression BeadArray
platform and quantitative sequencing of real-time polymerase chain re-
action (RT-PCR) products showed that differential allelic expression is a
widespread phenomenon,which affects the expression of 20% of human
genes in individuals of European descent (Serre et al., 2008). In addition,
quantitative measurements of allelic expression in different HapMap
populations (60 Caucasians of Northern and Western European origin
(CEU), 45 unrelated Chinese individuals from Beijing University (CHB),
45 unrelated Japanese individuals from Tokyo (JPT), and 60 Yoruba
from Ibadan, Nigeria (YRI)), using the Illumina BeadChips, found that
approximately 18% of human genes showed differential allelic expres-
sion (Dimas et al., 2008). Statistical analyses of the Illumina BeadChip
data have been used to identify genome regions that exhibit ASE.
These analyses included the integration of z-score computations and a
machine learning approach, based on hidden Markov models (Wagner
et al., 2010). Recently, high-throughput RNA sequencing (RNA-seq)
has provided a platform-independentmethod, similar to themicroarray
approach, which has allowed identification of the genetic regulatory
variants at the transcript, isoform and allele levels. Statistical approaches
have been proposed to characterize ASE on the basis of RNA-seq data.
The binomial exact test has been applied to single nucleotide polymor-
phism (SNP) to test whether the expression of a reference allele was
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greater than or less than 0.5 (Degner et al., 2009). In addition, Nothnagel
et al. (2011) developed a statistical framework, based on the likelihood
ratio test, to examine allele imbalance of single SNPs in RNA-seq data,
which allows for allelemiscalls (Nothnagel et al., 2011). A Bayesian hier-
archicalmodel has beendeveloped bySkelly et al. (2011), usingRNS-seq
data fromadiploid hybrid of twodiverse Saccharomyces cerevisiae strains,
which can test for ASE in both a SNP and a gene (Skelly et al., 2011).

Although some statistical approaches have been developed to test
for ASE, using RNA-seq data, they mainly focus on a single SNP or a sin-
gle individual. To address the lack of statistical methods for detecting
ASE from high-throughput RNA-seq data, we developed a maximum
likelihood model to characterize ASE from individuals and populations.
In a single individual approximately 17% of genes showed ASE or
variable ASE, with a false discovery rate (FDR) of 7.50%. Together with
simulation experiments, our method is accurate and robust for the de-
tection of different allelic fractions, and reads coverage levels and ran-
dom noise. Furthermore, we identified more ASE genes in populations.
These data provide insights into the genetic mechanism of cis-acting
regulatory variants and the inconsistent effects of regulatory variants
observed in different individuals.

2. Materials and methods

2.1. Human reference genome construction of SNP data

Phased variant sets were obtained from 1000 genome projects
(ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase1/analysis_results/
integrated_call_sets), which included phased genotypes fromNA12891,
NA12892 and CEU individuals (lymphoblastoid samples from HapMap
individuals from the CEPH—Centre d'Etude du Polymorphism Human).
All heterozygote SNP genome locations were mapped and phase infor-
mation was converted to the Browser Extensible Data (BED) format.
The mitochondrial chromosome, Y chromosome and random genome
supercontigs were excluded from the following analysis. Raw DNA
sequencing data were mapped to the hg19 human reference genome
sequence (GRCh37) and the BAM (Binary Alignment/Map) data were
downloaded (ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/pilot_data/
data/). The data were then transformed from BAMs to Sequence Align-
ments/Maps (SAMs), using SAM tools. Each of the alleleswasmapped to
SAMalignments and allele read countsweremade according to genome
location of SNPs and phase information.

2.2. Allele-specific expression SNP processing

We obtained approximately 10.1 Gb of sequence for NA12891 and
NA12892 by RNA-seq data, produced fromhigh throughput sequencing
(Lalonde et al., 2011). The CEU RNA-seq data sets were obtained from
Montgomery et al. (2010). All raw reads were mapped to the hg19 ge-
nome sequence using Bowtie2 software (http://bowtie-bio.sourceforge.
net/bowtie2/index.shtml), with local parameters (−D 15-R 2-N 0-L 20-
i S,1,0.75) that allowed a maximum of two mismatches in a seed align-
ment (Bowtie2 web manual) (Langmead and Salzberg, 2012). The
Bowtie2 software was used to search for multiple alignments, report
the best and print alignments in SAM format. In order to obtain allele-
specific read counts of SNPs in each gene, SNPswere grouped according
to gene annotations given by Ensembl. We examined any genic SNPs
overlapping a mapped read. Reads were assigned, using Perl software,
according to SNP phase information from the 1000 genome projects.
This resulted in allele-specific read counts for SNPs in each gene. Allelic
read counts were also obtained for heterozygous SNPs from 45 CEU in-
dividuals to estimate ASE for the population. In addition, spliced reads
were processed by a spliced read mapper for RNA-seq (TopHat) to
obtain allelic read counts as described above.

2.3. Maximum likelihood statistical models

We denoted yij as the allelic read counts of SNP j in gene i and Nij as
the read counts of SNP j in gene i. Under the null hypothesis of balanced
allelic expression, yij should follow the binomial distribution, B (Nij, 0.5).
It is expected that the distribution of allelic fractions in genomic DNA
will approximate be a binomial distribution, with a probability of 0.5.
There was some divergence in the distribution of allelic fractions in
genomic DNA from the binomial distribution (Fig. 1). It is suggested
that a minority of SNPs are biased in genomic DNA. In previous studies,
a small proportion of SNPs is biased toward one of the two alleles, and
they identified the presence of flanking sequences sharing identity
with another region of genome as one factor contributing to this read-
mapping bias at some SNPs in humans (Degner et al., 2009; Skelly
et al., 2011). The read-mapping bias at some SNPs may be the same
for both genomic DNA and RNA-seq data due to the same cell andmap-
ping method, so we tolerated the biased SNPs. When the probability of
yij was not fixed, the binomial distribution was not applicable for allelic
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Fig. 1. The bias of allelic fraction. (A) Distribution of allelic fraction in genomic DNA and RNA data. Black solid line: the probability density curve of the allelic fraction in genomic DNA
data. Red solid line: the probability density curve of the allelic fraction in the RNA data. Gray dashed curve: the probability density curve of the expected allelic fraction for
allele balance, B (N, 0.5). Gray dashed vertical line: the expected fraction of allele (p = 0.5). (B) Magnitude of ASE for genes in NA12891. Red: fold-changes in ASE genes;
Blue: fold-changes in genes with variable ASE; Black: fold-changes in genes with no ASE. The fold-changes were computed as the logarithm of the mean of the allelic fraction,
at lower levels for all SNPs in each gene.
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