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Computational modeling of biological networks permits the comprehensive analysis of cells and tissues to define
molecular phenotypes and novel hypotheses. Although a large number of software tools have been developed,
the versatility of these tools is limited by mathematical complexities that prevent their broad adoption and
effective use bymolecular biologists. This study clarifies the basic aspects of molecular modeling, how to convert
data into useful input, as well as the number of time points andmolecular parameters that should be considered
for molecular regulatory models with both explanatory and predictive potential. We illustrate the necessary
experimental preconditions for converting data into a computational model of network dynamics. This model
requires neither a thorough background inmathematics nor precise data on intracellular concentrations, binding
affinities or reaction kinetics. Finally,we showhowan interactivemodel of crosstalk between signal transduction
pathways in primary human articular chondrocytes allows insight into processes that regulate gene expression.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the past years it has become increasingly clear that a thorough
understanding of cells, tissues and disease pathologies is a prerequisite
for the development of effective therapies and drugs (Lenas et al, 2009a,
b). This insight is causing a gradual shift towards systems biology, that
aims to unravel the molecular mechanisms of biological systems as a
whole, rather than focusing on the individual components. Systems
biology follows an empirical cycle in which computational modeling
plays an important role (Fig. 1). To support biologists in the construction
of computational models, computer scientists have contributed a large
number of software tools, gathered for instance in the SBML database,
listing over 250 software packages (SBML). Still, modeling is applied
only sparsely in biological research. In this paper we will provide
experimental biologists with guidelines for model construction.

The research question provides boundary conditions for the level of
detail that is required in the model. The most precise models are
detailed descriptions of reaction mechanisms, including the complete

sequence of elementary reactions. These models are usually based on
mass action kinetics and reaction steps are mathematically described
using ordinary differential equations. Time and concentrations are
continuous in themodel, and the behavior of the network can be solved
analytically for small models or can be evaluated numerically. Copasi is
an example of a supporting tool that enables the construction and
analysis of ODE models (Hoops et al., 2006). Although ODE models
provide useful insights in biology (Kogan et al., 2012), they are
parameter-intensive and require data on intracellular concentrations,
binding affinities and reaction kinetics. Therefore, ODE models are
often restricted to single pathways or small subnetworks. Being
centered on mathematical equations, ODE models are not intuitively
accessiblewithout amathematical background and/or previousmodeling
experience. On the other side of the spectrum are logic-based models,
such as Boolean models, which can be evaluated in a stepwise manner.
These models abstract from the details of reaction mechanisms,
concentrations and time. “When A is active, B becomes active” is
an example of an interaction in such models. The simplicity of the
interactions makes these models suitable for construction of very
large networks that can qualitatively capture biological phenomena
surprisingly well (Kerkhofs et al., 2012). Boolean networks can for
example be constructed using GINsim (Naldi et al., 2009).

Between these two extremes is a large range of models that abstract
from biological reality with respect to reaction mechanisms, time or
concentrations. For research questions concerning networks of signaling
pathways that lead to gene expression patterns, awell-chosen abstraction
level shall enable the construction of models that preserve the relevance
of timing information and support multi-level concentrations in the
study of biological systems. In this paper we focus on such timed
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multi-level models with abstracted reaction kinetics. Example tools for
such models include ANIMO (Schivo et al., 2012a,b) and Cell Illustrator
(Nagasaki et al., 2003). We use ANIMO (Box 1) as the modeling tool in
this paper, as it was developed for use by biologists who have no prior
modeling experience. Furthermore, the visualization stays as close as
possible to biological traditions and it provides a good match with the
level of detail found in most experimental data.

The next section of this paper briefly addresses aspects of the
experimental design that need to be considered when the aim is to
generate data to construct a model. Then, we will give detailed
descriptions of the steps from experimental data to an in silico model.
This section is followed by the construction of a small model based on
our own research, illustrating how a model can be used to generate
new hypotheses.

2. Experimental preconditions

Many biological events can be interpreted as changes in activity. For
example, changes in concentration, phosphorylation or localization of a
protein, or changes in gene expression are causal factors with respect to
downstreameffects. As such, the state or concentration of themolecules

involved can be described in terms of an activity. The more active the
molecule is, the stronger it will affect downstream processes. We
propose a number of guidelines for experimental design: (1) In the
process of choosing the most suitable molecules to measure, include
molecules that either have downstream effects in the model or can be
used as an output of the model. Successive iterations of the empirical
cycle can be performed to expand an existingmodel (Fig. 1). (2) Inclusion
of overlapping treatment conditions can be used to normalize
experimental data between different days or assay batches. (3) For each
of the measurements, a positive control that gives an indication of the
potential maximum intensity in the biological system needs to be
included. In this way, activity of data can be scaled between 0 and 100%
to construct a nondimensional model, omitting the need for precise
intracellular concentrations. (4) A negative control (t=0) gives insight
in background activity levels.

Single time-point measurements give poor insight in the dynamic
behavior of the system. To decide how many time points should be
measured and what the optimum time range is, the following factors
need consideration. Ideally, measurements are obtained at time points
starting from t = 0 until the system reaches a steady state. For most
primary effects in signal transduction networks, this means measuring
more time-points in the first 2–30 min after stimulation. When peak
dynamics are expected, 3 time points are the absolute minimum to
describe each peak, one before the peak, one as close as possible to
the actual peak and one after the peak. Five time-points and more
allow finding, and describing a peak in more detail, especially in the
presence of experimental noise. If no peak dynamics are expected, at
least 4 time points should bemeasured. Try to avoid having the highest
measurement value as the first or last value in your time series, as it will
lead to uncertainty about the actual behavior of the system.

Effects of an experimental treatment can be categorized as primary
(or direct) effects or higher order (or indirect) effects. The latter are
effects in which feedback is involved. For signal transduction, it is
often sufficient to have time points up to 240/480 min for primary
effects. Primary effects on gene expression typically take 4–12 h.
When you are interested in higher order effects, the time range of
these effects has to be taken into account. For signal transduction this
can mean measurements up to 24/48 h; for gene expression involving
higher order effects, e.g. in the case of cell differentiation, effects can
take up to several weeks. The corresponding effort to understand the
whole chain of events leading to a specific endpoint rapidly increases
when longer time-courses and higher order effects are to be captured
in a model.

3. Modeling 101

Constructing a model in ANIMO starts with drawing a network
topology. This topology consists of nodes, corresponding to molecules,
and arrows, corresponding to interactions (activations or inhibitions).

Fig. 1.Workflowdescribing the empirical cycle in systems biology. Starting from a research question, experiments and data provide input for amodel,which in turn can be used for in silico
experiments and the generation of new hypotheses.

Box 1

ANIMO: Analysis of Networks with Interactive MOdeling
Cytoscape (Shannon et al., 2003) has been designed for the
visualization of (static) molecular interaction networks. ANIMO,
a plugin to Cytoscape, was recently developed to turn Cytoscape
networks into dynamic functional models (Schivo et al., 2012a,b).
These dynamics are introduced by enriching interactions in the
networkwith cause-and-effect relationships, such as “A activates
B”. Each interaction requires a single parameter that determines
the speed or strength of the interaction. ANIMO works with non-
dimensional data that are scaled to a hypothetical maximum, for
instance the maximum experimental intensity. Every node in the
network represents the whole population of a molecular species
and is characterized by its current activity level. Upstream
molecules exert their downstream effects as long as their current
activity level is greater than zero, whereas the activity of
downstreammolecules is influenced through incoming interactions.
User-input is automatically translated into an underlying formal
model based on Timed Automata (Schivo et al., 2012a). ANIMO
is suited for construction of timedmodelswith 2–100activity levels
and timing can be abstracted to time steps instead of real–time. As
such, it covers a modeling area between Boolean models and ODE
based models.
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