Contents lists available at SciVerse ScienceDirect

Gene

journal homepage: www.elsevier.com/locate/gene

The complete mitochondrial genome of the wild silkworm moth, Actias selene

Qiu-Ning Liu¹, Bao-Jian Zhu¹, Li-Shang Dai, Guo-Qing Wei, Chao-Liang Liu^{*}

Laboratory of Sericulture, College of Life Science, Anhui Agricultural University, 130 Changjiang West Road 230036, PR China

ARTICLE INFO

Article history: Accepted 3 June 2012 Available online 9 June 2012

Keywords: Mitochondrial genome Lepidoptera Actias selene Phylogenetic analysis

ABSTRACT

The complete mitochondrial genome (mitogenome) of *Actias selene* (Lepidoptera: Saturniidae) was determined to be 15,236 bp, including 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a control region. The arrangement of 13 PCGs was similar to that of other sequenced lepidopterans. The AT skew of the mitogenome of *A. selene* was slightly negative, indicating a higher number of T compared to A nucleotides. The nucleotide composition of the mitogenome of *A. selene* was also biased toward A + T nucleotides (78.91%). All PCGs were initiated by ATN codons, except for the gene encoding *cytochrome c oxidase subunit* 1 (*cox1*), which may be initiated by the TTAG, as observed in other lepidopterans. Three genes, including *cox1*, *cox2*, and *nad5*, had incomplete stop codons consisting of just a T. With an exception for *tmS1(AGN)*, all the other tRNA genes displayed a typical clover-leaf structure of mitochondrial tRNA. The A + T-rich region of the mitogenome of *A. selene* was 339 bp in length, and contains several features common to the Lepidopteras, including non-repetitive sequences, a conserved structure combining the motif ATAGA and an 18-bp poly-T stretch and a poly-A element upstream of *trnM* gene. Phylogenetic analysis showed that *A. selene* was close to Saturniidae. © 2012 Elsevier B.V. All rights reserved.

1. Introduction

Mitochondrial DNA (mtDNA) is maternally inherited DNA, characterized by a rapid evolutionary rate and lack of genetic recombination. It has been widely used as an informative molecular marker for diverse evolutionary studies among species, including molecular evolution, phylogenetics, population genetics, and comparative and evolutionary genomics (Boore, 1999). In the majority of insects, the mitogenome is a double-stranded, circular molecule, varving in size between 14 and 19 kilobases (kb). It contains 37 genes, including 13 protein coding genes (PCGs) (subunits 6 and 8 of the ATPase [atp6 and atp8], cytochrome c oxidase subunits 1-3 [cox1-cox3], cytochrome B [cob], NADH dehydrogenase subunits 1-6 and 4 L [nad1-6 and nad4L]), two ribosomal RNA genes encoding the small and large subunit rRNAs [rrnL and rrnS], 22 transfer RNA (tRNA) genes and a control region of variable length, known as the A + T-rich region (Boore, 1999; Moritz et al., 1987; Wolstenholme, 1992). The mitochondrial genome encodes the origin of replication and promotes the translation of both the heavy (H) and the light (L) strands, except the A + T-rich region (Kasamatsu et al., 1971).

To date, more than 200 species of the complete or near-complete mitogenomes have been sequenced from insects (http://www.ncbi. nlm.nih.gov). Lepidoptera is the 2nd most numerous order of insects. accounting for more than 160,000 insect species, but only about 50 complete or near-complete mitogenomes are currently available in GenBank (Table 1). The genomic knowledge of new lepidopteran mitogenomes will provide further insight into our understanding of diversity of this order and their evolutionary history. The silk-producing insects with economic value in Lepidoptera belong to two families of moth. Bombycidae and Saturniidae. The complete mitogenomes of three species of Bombycidae and six species of Saturniidae were sequenced: Bombyx mori (Yukuhiro et al., 2002), Japanese Bombyx mandarina (Yukuhiro et al., 2002) and Chinese B. mandarina (Pan et al., 2008) belonging to family Bombycidae; Antheraea pernyi (Liu et al., 2008), Antheraea yamamai (Kim et al., 2008), Eriogyna pyretorum (Jiang et al., 2009), Manduca sexta (Cameron and Whiting, 2008) and Samia cynthia ricini (Kim et al., 2011) belonging to the family Saturniidae. Within the Saturniidae family, Actias selene is an important wild, silk-spinning insect, mainly located in China, Japan, India and Southeast Asian countries. Recently, partial regions of the mitochondrial DNA of A. selene, the large and small ribosomal RNA and cox 1, was sequenced and used for phylogenetic analysis (Pu et al., 2009; Zhu et al., 2010). However, the complete mitochondrial genome (mitogenome) sequence of A. selene was not reported until now.

In the present paper, the complete nucleotide sequence of the mitogenome of *A. selene* was sequenced. The phylogenetic analyses to the selected species from Lepidoptera and Diptera based on the mitogenome sequences were performed using neighbor-joining (NJ) method.

Abbreviations: mitogenome, mitochondrial genome; PCGs, protein-coding genes; cox, cytochrome c oxidase; cob, cytochrome B; nad, NADH dehydrogenase; rrnS, small subunit ribosomal RNA; rrnL, large subunit ribosomal RNA.

^{*} Corresponding author at: College of Life Science, Anhui Agricultural University, 130 Changjiang West Road 230036, PR China. Tel./fax: +86 551 5786201.

E-mail address: cyschx@163.com (C.-L. Liu).

¹ These authors contribute to this work equally.

^{0378-1119/\$ -} see front matter © 2012 Elsevier B.V. All rights reserved. doi:10.1016/j.gene.2012.06.003

QN. Liu et al.	/ Gene 505	(2012)	291-299
----------------	------------	--------	---------

Table 1

The complete mitochondrial genome of Lepidoptera.

Species	Length (bp)	Accession number	References
Actias selene	15 236		This study
Caligula hoisduvalii	15,250	NC 010613	Hong et al. (2008)
Eriogyna nyretorum	15 327	FI685653	liang et al. (2009)
Antheraea pernyi	15,527	AV242996	Liu et al. (2008)
Antheraea yamamai	15 338	FU726630	Kim et al. (2000)
Samia cynthia ricini	15,356	IN215366	Kim et al. (2012)
Manduca sexta	15,500	FU286785	Cameron and Whiting (2008)
Adoxophyes honmai	15,680	D0073916	Lee et al. (2006)
Coreana ranhaelis	15,000	NC 007976	Kim et al. (2006)
Ostrinia nubilalis	14 535	NC 003367	Coates et al. (2005)
Artogeja melete	15 140	FU597124	Hong et al. (2009)
Rombyx mori	15,656	AB070264	Yukuhiro et al. (2002)
Chinese Bombyx mandarina	15,682	AY301620	Pan et al. (2008)
Japanese Bombyx mandarina	15,928	NC 003395	Yukuhiro et al. (2002)
Eumenis autonoe	15,489	G0868707	Kim and Kim (2010)
Acraea issoria	15.245	G0376195	Hu et al. (2010b)
Hyphantria cunea	15 481	GU592049	Liao et al. (2010)
Diatraea saccharalis	15 490	FI240227	Liet al (2011)
Spilonota lechriaspis	15 368	HM204705	Zhao et al. (2011)
Pieris ranae	15,500	HM156697	Mao et al (2010)
Fabriciana nerinne	15 140	IF504707	Kim et al. (2010)
Grapholita molesta	15,110	H0392511	Son and Kim (2011)
Chilo suppressalis	15 456	H0860290	Yin et al. (2011)
Grapholita molesta	15,776	H0116416	Gong et al. (2011)
Helicoverna armigera	15 347	GU188273	Yin et al. (2010)
Ochrogaster lunifer	15,517	AM946601	Salvato et al. (2008)
Phthonandria atrilineata	15,555	FU569764	V_{ang} et al. (2009)
Ctenontilum vasava	15,155	IF713818	Unpublished
Argynnis hyperbius	15.156	IF439070	Unpublished
Libythea celtis	15.164	H0378508	Unpublished
Sesamia inferens	15 413	IN039362	Unpublished
Cnaphalocrocis medinalis	15 377	10305693	Unpublished
Kallima inachus	15.183	IN857943	Unpublished
Apatura ilia	15,242	IF437925	Unpublished
Fabriciana nerippe	15,140	JF 107020	Unpublished
Parnassius bremeri	15.389	FI871125	Unpublished
Sasakia charonda	15.244	AP011824	Unpublished
Corcvra cephalonica	15.273	H0897685	Unpublished
Ctenoptilum vasava	15.468	IF713818	Unpublished
Phalera flavescens	15.659	JF440342	Unpublished
Argynnis hyperbius	15.156	JF439070	Unpublished
Apatura metis	15,236	JF801742	Unpublished
Libvthea celtis	15.164	HO378508	Unpublished
Spindasis takanonis	15.349	HO184266	Unpublished
Calinaga davidis	15.267	HO658143	Unpublished
Lvmantria dispar	15.569	FI617240	Unpublished
Protantigius superans	15.248	HO184265	Unpublished
Euploea mulciber	15,166	HQ378507	Unpublished
Calinaga davidis	15,267	HQ658143	Unpublished
Troides aeacus	15,263	EU625344	Unpublished
Teinopalpus aureus	15,242	HM563681	Unpublished
Papilio maraho	16,094	FJ810212	Unpublished
Luehdorfia chinensis	13,860	EU622524	Unpublished

2. Materials and methods

2.1. DNA extraction

The larvae of *A. selene* were collected from willow trees in Dangtu, Anhui Province, and reared in an enclosed environment with willow tree leaves until pupation. Total DNA was isolated from single specimens using the Aidlab Genomic DNA Extraction Kit (Aidlab Co., Beijing, China) according to the manufacturer's instructions. DNA from individual larvae was used for amplification of the fragments of the complete mitogenome.

2.2. PCR amplification and sequencing

For amplification of the entire mitogenome of *A. selene*, nine primer sets were synthesized (Beijing Sunbiotech Co., Ltd., Beijing, China)

Table 2		
Primers	used	for

PCR.

Duine and a	D-i	C' (1-1-)
Primer pair	Primer sequence $(5' \rightarrow 3')$	Size (kd)
F1	GCTTTTGGGCTCATACCTCA	1.9 k
R1	GATGAAATACCTGCAAGATGAAG	(21-1938)
F2	TGGAGCAGGAACAGGATGAAC	2.0 k
R2	GAGACCADTACTTGCTTTCAG	(1828-3774)
F3	ATTTGTGGAGCTAATCATAG	1.1 k
R3	GGTCAGGGACTATAATCTAC	(3670-4790)
F4	TCGACCTGGAACTTTAGC	2.9 k
R4	GCAGCTATAGCCGCTCCTACT	(4529-7466)
F5	TAAAGCAGAAACAGGAGTAG	3.0 k
R5	ATTGCGATATTATTTCTTTTG	(7431-10,411)
F6	GGAGCTTCTACATGAGCTTTTGG	2.2 k
R6	GTTTGCGACCTCGATGTTG	(10,733-12,939)
F7	CGGTTTGAACTCAGATCATGTAAG	1.1 k
R7	TATTGTATCTTGTGTATCAGAGTTTA	(12,838-13,896)
F8	GGTCCCTTACGAATTTGAATATATCCT	2.2 k
R8	AAACTAGGATTAGATACCCTATTAT	(12,507-14,583)
F9	CTCTACTTTGTTACGACTTATT	1.5 k
R9	TCTAGGCCAATTCAACAACC	(14,162-361)

(Table 2). Primers were designed based on the conserved nucleotide sequences of known mitochondrial sequences in Lepidoptera (Cameron and Whiting, 2008; Hong et al., 2008; Jiang et al., 2009; Kim et al., 2008; Kim et al., 2011; Liu et al., 2008; Pan et al., 2008; Yukuhiro et al., 2002) or the known sequences of fragments of the mitogenome of A. selene that were previously sequenced in our laboratory (GenBank accession nos. FJ358505 and FJ905474). The fragments ranging from 1.1 to 3.0 kb were amplified using Aidlab Long Taq (Aidlab Co., Beijing, China) according to the manufacturer's instructions. The PCR was performed under the following conditions: 3 min at 94 °C, followed by 35 cycles of 30 s at 94 °C and 1-3 min at 50-60 °C, and 10 min at 68 °C. The PCR products were separated by agarose gel electrophoresis (1% w/v) and purified using a DNA gel extraction kit (Aidlab Co., Beijing, China). The purified PCR products were ligated into the T-vector (TaKaRa Co., Dalian, China) and sequenced at least three times (Sunbiotech, Beijing Sunbiotech Co., Ltd., Beijing, China).

2.3. Sequence assembly and gene annotation

Sequence annotation was performed using the DNAStar package (DNAStar Inc. Madison, USA) and online blast tools available through the NCBI web site. The PCGs were identified by sequence similarity with A. pernyi (Liu et al., 2008). The nucleotide sequences of PCGs were translated with the invertebrate mitogenome genetic code. Alignments of PCGs for each of the available lepidopteran mitogenomes were performed using Clustal X (Thompson et al., 1997). Composition skewness was calculated according to the formulas: AT skew = [A-T]/[A+T]; GC skew = [G-C]/[G+C] (Junqueira et al., 2004). Tandem repeats in the control region were predicted using the Tandem Repeats Finder program (http://tandem.bu.edu/trf/trf.html) (Benson, 1999). Identification of tRNA genes was verified using the tRNAscan-SE program. The potential stem-loop secondary structures within these tRNA gene sequences were calculated using the tRNAscan-SE Search Server (http://lowelab.ucsc.edu/tRNAscan-SE/) (Lowe and Eddy, 1997). The secondary structures of tRNA genes that could not be predicted using the tRNAscan-SE were analyzed by comparison with the nucleotide sequences of other insect tRNA sequences (Hong et al., 2008; Jiang et al., 2009; Liu et al., 2008; Salvato et al., 2008).

2.4. Phylogenetic analysis

To clarify the phylogenetic relationship among Lepidopteras, the complete mitogenomes of 15 lepidopteran species were obtained from the GenBank database. These sequences of mitogenomes were from five lepidopteran superfamilies within the lepidopteran suborder, including Bombycoidea: *A. selene, B. mori* (Yukuhiro et al., 2002),

Download English Version:

https://daneshyari.com/en/article/2817767

Download Persian Version:

https://daneshyari.com/article/2817767

Daneshyari.com