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We discuss a computational approach for reconstructing the native structures of proteins from the
knowledge of a structural profile − the first eigenvector of the contact map of the native structure itself. The
procedure consists in carrying out Monte Carlo simulations of a tube model of the protein structure with an
energy bias towards the target structural profile. We present the reconstruction of two small proteins and
address problems arising in the reconstruction of larger proteins. Our results indicate that an accurate
physico-chemical energy function should be used in conjunction with the structural profile bias in order to
achieve accurate reconstructions.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The prediction of the structure of a protein from the knowledge of
its amino acid sequence represents an ongoing challenge in biophysics
and structural biology (see e.g. Moult et al., 2005). The most accurate
results to date have been obtained by using approaches in which all-
atom structures are constructed by optimising the assembly of
fragments whose conformations are predicted at first (Simons et al.
1997). The prediction of the conformations of individual fragments is
made by using bioinformatics tools for searching structural databases
for similar amino acids sequences, and the subsequent assembly is
carried out by using sophisticated all-atom force fields (see Bradley
et al., 2005 and Schueler-Furman et al., 2005). Here, we take a
different strategy by attempting the reconstruction of three-dimen-
sional structure from a one-dimensional representation, or structural
profile. This type of approach has been exploited in the alignment and
comparison of protein structures as one-dimensional profiles can be
handled more easily than three-dimensional structures (see e.g.
Teichert et al., 2007). These results suggest that a one-dimensional
profile can be used to help identify a three-dimensional protein
structure and to reveal similarities between structures.

In the present work we consider a specific one-dimensional
representation, the first eigenvector of the contact map of a protein
structure (Porto et al., 2004). This profile is correlated to sequence
hydrophobicity (Bastolla et al., 2005), and contact vector (Kabakcioglu

et al., 2002) and can be predicted to good accuracy from the sequence
(see e.g. Kinjo and Nishikawa, 2005). When using the contact map's
principal eigenvector as structural profile it is in principle possible to
reconstruct exactly the full structure from it, at least for single-domain
proteins (Porto et al., 2004). Indeed, it has been shown by Porto et al.
that the contact map can be reconstructed from its principal
eigenvector by a deterministic algorithm. Moreover, it is also known
that the contact map, even if incompletely known, is sufficient to
determine the three-dimensional structure (Vendruscolo et al., 1997)
thus resulting in the possibility of reconstructing three-dimensional
structures from one-dimensional profiles. Chen et al. (2007) have
shown that only about 70% of the information encoded in the con-
tact map (equivalent to 1.5 constraints per residue) is necessary to
reconstruct a protein structure to a Cα-RMSD of about 3 Å.
Reconstruction from structural profiles corresponds to exactly one
real-valued (and non-pairwise) constraint per residue. The first step of
this prediction, i.e. the reconstruction of a contact map from its
principal eigenvector, however, has been so far only possible for
numerically exact profiles (Porto et al., 2004). The aim here is
therefore to find a stochastic reconstruction scheme that is more
robust to noise. At variance with the exact reconstruction procedure
proposed by Porto et al., we attempt to reconstruct directly the three-
dimensional structure from its one-dimensional representation,
without going first through a contact map. In the general scheme
that we envisage for predicting native structures of proteins from their
amino acid sequences, the procedure that we describe in this work is
eventually to be used for one-dimensional profiles that are predicted
from amino acid sequences. Such profiles are inevitably affected by
inaccuracies, or statistical noise, and are thus not amenable to the
exact reconstruction procedure described by Porto et al. (2004). In the
present work, however, we do not investigate directly the effect of the
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noise, but use the exact profiles obtained from actual protein
structures to establish the general feasibility of a direct reconstruction.

We adopt here a computationally efficient structural model in
which a protein conformation is represented as a tube of a shape that
embeds the backbone of the protein and accounts in a coarse-grained
manner for the excluded volume of the side chains (Hoang et al.,
2004). The choice of the tube model not only enables to keep track of
the amino acids' coordinates but also contains energy terms yielding
realistic secondary structure motifs and protein-like behaviour.

2. Materials and methods

2.1. Tube model

Coarse-grained descriptions of protein structures allow the
conformational space to be explored more efficiently than all-atom
representations, and are therefore often very useful in computational
approaches. In the most tractable models proteins are confined to a
lattice (Sali et al., 1994). Valuable insight has been gained from this
approach, but there are limits to how realistic it can be made. A
promising new model has recently been proposed whose distinctive
feature is that the protein backbone is assigned a finite thickness to
account in an effectiveway for the volume occupied by the amino acid
side chains (Hoang et al., 2004; Lezon et al., 2006; Banavar et al., 2006;
Auer et al., 2007). The interactions considered include directional
hydrogen bonding (with well depth eHB), a local bending stiffness
(defined by an energy penalty eS), and pairwise attractive hydrophobic
forces (with energy eW). The protein is thus regarded as a uniform
semi-flexible tube whose radial symmetry is broken by the restraints
imposed by the hydrogen bonds. The excluded volume of the tube
makes this model significantly different from other off-lattice coarse-
grained models such as beads-on-strings, and also from Gō models
because it includes no explicit energetic bias towards a predetermined
structure. The energy of a protein in this model then is

Etube ¼ ∑
i
a i−1; i; iþ 1ð ÞeS þ ∑

ibj
b i; jð ÞeW

þ∑
ibj
c i−1; i; iþ 1; j−1; j; jþ 1ð Þ eHB i; jð Þ þ c i; iþ 1; iþ 2; j; jþ 1; jþ 2ð ÞecoHB½ �

ð1Þ

with the sums running over residues i. Functions a, b and c all are
either 0 or 1 such that eS becomes active if the angle at residue i is too
tight, eW if residues i and j are in contact, and eHB if the conditions for
hydrogen bonding are fulfilled. For iN1 and jbN this means that the
binormal vectors at i and j, as well as the vector connecting i and j, Yrij,
are all roughly parallel. For the first and last residue, where no
binormal vectors can be defined, the definition of hydrogen bonds is
altered to the constraint that Yrij make an angle between 70° and 110°
with the extremal peptide links. The hydrogen bond energy eHB(i,j)
exists in two versions. For j= i+3 the hydrogen bond is considered local
and eHB(i,j)=−1 (defining the energy scale for the model), for jN i+3
the bond is non-local and eHB(i,j)=−0.7. Local hydrogen bonds
additionally require positive chirality Yri;iþ1 �Yriþ1;iþ2

� � �Yriþ2;iþ3N0
� �

. If
residues i and j form a hydrogen bond and i+1 and j+1 do the same the
structure gains energy for cooperative bonding, ecoHB=−0.3. As there
exist very good programs for side chain addition (see Canutescu et al.,
2003 and references therein), successful backbone reconstruction is
almost equivalent to complete reconstruction.

2.2. Contact map and principal eigenvector

A protein's contact map is a N×N symmetric matrix, where N is the
number of amino acids, storing information about which amino acids
are in contact (see Fig. 1). The matrix is binary with Cij=1 if amino
acids i and j are in contact and 0 otherwise. Two amino acids are

defined as being in contact if the distance xij=|Yrij| between their Cα-
atoms is less than a threshold value, for example rc=7.5 Å,

Cij ¼ 1 xijbrc
0 xijzrc

:

�
ð2Þ

As a real symmetric matrix the contact map has N real eigenvalues.
The structural profile then is the contact map's eigenvector to the
largest eigenvalue (principal eigenvector or PE) and contains informa-
tion about each amino acid's connectivity (see Fig. 2). Well connected
amino acids that are in contact with many other residues have larger
vector entries than those connected to fewer. In this context the
correlation to hydrophobicity is also intuitively clear as residues with
many contacts will be buried inside the protein fold as a high
hydrophobicity requires (a discussion can be found in Bastolla et al.,
2005). Note that the structural profile based on the PE, which is
meaningful for single-domain folds, can be generalised to multi-
domain folds (Teichert and Porto, 2006; Bastolla et al., 2006).

Alternative structural profiles include the principal eigenvector of a
generalised contact map where contact is instead defined as

Cij ¼
1

exp
xij−x0
Δx

� �þ 1
ð3Þ

and matrices are no longer binary. Profiles derived from this contact
definition have the advantage of being a smooth function of the
distance and thus exhibit smoother energy landscapes. For a plot of
these contact functions see Fig. 3. Depending on the sharpness of the
decline Δx, profiles of the second kind can be tuned to be more or less
similar to the original definition and will be predictable from protein
sequences with a similar accuracy.

2.3. Energy terms for Monte Carlo simulations

In order to carry out Monte Carlo simulations of the tube model we
compare the profile of a candidate structure to the target profile
obtained from the structure to be reconstructed, and define the energy
as the sum of differences in the vector entries,

EPE ¼ ∑
i
min jvi−tij;0:25ð Þ: ð4Þ

Here, a cutoff is introduced that limits the contribution of each
vector entry to 0.25. For structures close to the target this cutoff makes

Fig. 1. Contact map of the native state of the FBPWWdomain (PDB id. 1E0L), a small all-
β protein (N=37). Black squares indicate contacts between amino acids. The native
structure of this proteinwas completely recovered by the reconstruction procedure that
we describe in this work.
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