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Cancer prediction is of great importance and significance and it is crucial to provide researchers and scientists
with novel, accurate and robust computational tools for this issue. Recent technologies such as microarray and
next-generation sequencing have paved the way for computational methods and techniques to play critical
roles in this regard. Many important problems in cell biology require the dense nonlinear interactions between
functionalmodules to be considered. The importance of computer simulation in understanding cellular processes
is nowwidely accepted, and a variety of simulation algorithms useful for studying certain subsystems have been
designed. In this article, a sparse compact incremental learning machine (SCILM) is proposed for cancer classifi-
cation problem on microarray gene expression data, which take advantage of correntropy cost that makes it ro-
bust against diverse noises and outliers. Moreover, since SCILM uses l1-norm of the weights, it has sparseness,
which can be applied for gene selection purposes aswell. Finally, due to compact structure, the proposedmethod
is capable of performing classification tasks in all of the caseswith only one neuron in its hidden layer. The exper-
imental analysis is performed on 26well-knownmicroarray data sets regarding diverse kinds of cancers and the
results show that the proposed method not only achieved significantly high accuracy but also because of its
sparseness, final connectivity weights determined the value and effectivity of each gene regarding the corre-
sponding cancer.
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1. Introduction

Most of human diseases are influenced by genes, and identifying
genetic landscape and profile of diseases is an undisputable fact espe-
cially when it comes to diseases such as cancer (Upstill-Goddard et al.,
2012). In the quest for determination of genetic causes of diseases,
new technologies such as next-generation sequencing (Morozova and
Marra, 2008; Gobernado et al., 2014) or microarray expression
(Muangsub et al., 2014), which are high-throughput procedures, have
paved the way to quantitate and record thousands of genes expression
levels simultaneously (Taylor et al., 2015; Nguyen and Rocke, 2002;
Daiely). These new technologies provide computational oncologists
with valuable information for cancer prediction and cancer classifica-
tion (Upstill-Goddard et al., 2012; Larranaga et al., 2006; Fogel, 2008).
Making the best use of these valuable information and extracting it
from data sets requires advanced, accurate and robust computational

techniques because these data sets most of the time follow “large-p-
small-n” paradigm, which means they have high number of observed
genes but low number of samples (Luque-Baena et al., 2014). Cancer
classification has been studied comprehensively with diverse methods
from weighted voting scheme (Golub et al., 1999) and partial least
square (PLS) (Nguyen and Rocke, 2002) to support vector machines
(SVM) (Furey et al., 2000) and extreme learning machines (ELM)
(Huang et al., 2006a). In addition to thesemethods, artificial neural net-
works (ANNs) (Lancashire et al., 2009), probabilistic neural networks
(PNNs) (Statnikov et al., 2005) and soft computing approaches (hybrid
of evolutionary computation and machine learning) were also applied
and developed for cancer diagnosis and cancer classification (Luque-
Baena et al., 2014; Liu et al., 2005). One of the well-known types of
ANNs are constructive networks whose optimum structures (number
of nodes in the hidden layer) are determined automatically (Kwok
and Yeung, 1997; Fahlman and Lebiere, 1989; Huang et al., 2006b).
In these networks, the number of nodes and connectivity weights
are gradually increased from the lowest to the optimum value and
they are categorized in two types: compact (Kwok and Yeung, 1997;
Fahlman and Lebiere, 1989; Huang et al., 2012) and non-compact
(Huang et al., 2006b). Input parameters of the newly added node in
the non-compact type are specified randomly whereas in the compact
one, they are adjusted via an optimization process.
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Most of these methods are suffering from “curse of dimensionality,”
which is related to high dimensions of these data sets. Another aspect
of cancer classification is related to feature selection (gene selection)
methods in order to prevent overfitting in the learning process (Song
et al., 2007). Model et al. (2001_ applied several feature selection
methods for DNAmethylation based cancer classification. Another com-
parative study for feature selection was performed by Li et al. (2004)
for tissue classification based on gene expression. Cawley and Talbot
(2006) proposed a sparse logistic regression with Bayesian regulariza-
tion for gene selection in cancer classification and Zhang et al. (2006)
used SVM with non-convex penalty for the same problem. Piao et al.
(2012) take advantage of ensemble an correlation-based gene selec-
tion method for gene expression data regarding cancer classification.
Interested readers can refer to five good surveys of feature selection in
(Saeys et al., 2007; Lazar et al., 2012; Hemphill et al., 2014; Ma and
Huang, 2008) and (Duval and Hao, 2010) and the references therein.
However, feature selection comes with certain prices such as addition
of another layer of complexity to the model or information loss (Saeys
et al., 2007).

In this article, we propose sparse compact incremental learning
machine (SCILM), which prevents overfitting without feature selection
due to its compact structure. Further, because of correntropy cost,
SCILM is robust against noises and outliers. In addition to these advan-
tages, since SCILM takes advantage of l1-normof theweights, it is sparse,
and this sparseness determines the most effective connectivity weights
corresponding to all features. Therefore, the final weights of the gener-
atedmodel by SCILM can be utilized for gene selection purposes aswell.

SCILM is a learning method for data sets with low sample size
and high dimensions. These characteristics are highly important and
medical and pharmaceutical research because numbers of genes or
drug compounds are significantly lower than number of features
and attributes one can find for them. SCILM is proposed for such prob-
lems and microarray profiles for cancer classification have both these
characteristics. The presented method prevents overfitting without
feature selection due to its compact structure and also because of
correntropy cost SCILM is robust against noises and outliers. Authors
in (Sharifi Noghabi and Mohammadi, 2015), investigated robustness
of correntropy objective function. In addition to these advantages,
since SCILM takes advantage of l1-norm of the weights, it is sparse and
this sparseness determines themost effective connectivity weights cor-
responding to all features. Therefore, the final weights of the generated
model by SCILM can be utilized for gene selection purposes as well.

The rest of the paper is organized as follows: Section 2 presents the
proposed method, and Section 3 describes the results and final section
concludes the paper.

2. Methods and materials

This section presents a new constructive network with sparse input
side connections. The network has a single hidden layer in which the
hidden nodes are added one by one until the network reaches a certain
predefined performance. After the new hidden node is added and
trained, its parameters are fixed and do not changed during training
the next nodes. Each newly added node is trained in two phases: (a)
input parameters adjustment and (b) output parameter adjustment.
The input parameters of the newly added node are trained based on
correntropy objective function. The output connection is adjusted by
MSE objective function. In the rest of this section, some preliminaries
are described followed by the description of the proposed algorithm.

2.1. Data set representation

The data set with N distinct samples is denoted by

χ ¼ xj; t j
� �N

j¼1; xj∈R
d; t j∈R ð1Þ

2.2. Network structure

Let f be a continuous mapping and fL be the output of the network
with L hidden nodes. The network is represented as

f L xð Þ ¼
Xi¼L

i¼1

βigi xð Þ ð2Þ

where

gi xð Þ ¼ g wi; xh i þ bið Þ;wi ∈ Rd; bi ∈ R; ð3Þ

where 〈., .〉 is inner product between two elements. In this paper, g is
considered as tangent hyperbolic function. The network (with L hidden
nodes) error vector is defined as

ζ L ¼ T−F ð4Þ

where T=[t1, ... , tN] and F=[ fL(x1), ... , fL(xN)]. The activation vector for
the ith hidden node is

Hi ¼ Hi1; :::;HiN½ �; i ¼ 1; :::; L ð5Þ

where Hij=gi(xj) , j=1, . . . ,N; i=1, . . . ,L.

2.3. Correntropy

Let v and u be two random variables with ζ=u−v. The correntropy
(Mohammadi et al., 2015) is a similarity measure between two random
variables and defined as

V ζð Þ ¼ E k ζð Þð Þ ð6Þ

where E(.) denotes the expectation in probability theory and k(.) de-
notes a kernel function which satisfy Mercer condition. In this paper,
only the Gaussian kernel is used. Regard to this,

V ζð Þ ¼ E
1ffiffiffiffiffiffi
2π

p
σ
e
− u−vj jj j2ð Þ

2σ2

 !
ð7Þ

2.4. Proposed method

This subsection proposes a new incremental constructive network
with sparse hidden layer connections. The hidden nodes are added to
the network and trained one by one. When the new node parameters
are tuned, they are frozen and do not change during training the next
nodes. Fig. 1 illustrates the mechanism of the proposed method.

Training of the new node performs in two stages:

2.4.1. Stage 1: input side optimization
In the previous work (Nayyeri et al., 2015), input parameters of

the new node are trained based on correntropy objective function as
follows:

V HLð Þ ¼ argmaxHLE
1ffiffiffiffiffiffi
2π

p
σ
e
− ζL−1−sLHLj jj j2ð Þ

2σ2

 !

¼ argmaxHLE k ζ L−1; sLHLð Þð Þ ¼ E bΦ ζ L−1ð Þ;Φ sLHLð ÞNð Þ ð8Þ

where sL is a real number which is obtained by trial and error and ζL−1

is the residual error for the networkwith L− 1 hidden nodes. Regarding
Eq.(8), the newnodeHL hasmost similarity to the residual error (regard
to kernel definition). It is important to note that when the new node
vector equals to the residual error vector (most similarity between the
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