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We tested the use of Generalized Linear Mixed Models to detect associations between genetic loci and environ-
mental variables, taking into account the population structure of sampled individuals. We used a simulation ap-
proach to generate datasets under demographically and selectively explicit models. These datasets were used to
analyze and optimize GLMM capacity to detect the association betweenmarkers and selective coefficients as en-
vironmental data in terms of false and true positive rates. Different sampling strategies were tested, maximizing
the number of populations sampled, sites sampled per population, or individuals sampled per site, and the effect
of different selective intensities on the efficiency of the method was determined. Finally, we apply these models
to an Arabidopsis thaliana SNP dataset from different accessions, looking for loci associated with spring minimal
temperature. We identified 25 regions that exhibit unusual correlations with the climatic variable and contain
genes with functions related to temperature stress.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The recent evolution in sequencing technologies now allows afford-
able high-resolution genotyping of many individuals [1]. The discovery
of genome-wide single-nucleotide polymorphisms (SNPs) may be
based on full genome resequencing [2–4] or targeted sequencing
of genomic regions such as exon or sequences adjacent to a restriction
enzyme cleavage site [5,6]. The large genetic variation data sets pro-
duced with extensive genome coverage offer the possibility to analyze
and compare polymorphisms between individuals. Genome-wide asso-
ciation studies (GWAS) have been used to identify the association be-
tween genetic loci and phenotypes such as traits or diseases from SNP
data using statistical modeling [7,8]. Hundreds of genes implicated, for
example, in human diseases [9,10] or important plant traits have been
discovered [11]. Next-generation sequencing technologies (NGS) open
up the possibility to detect many rare variants to improve such associa-
tionmapping strategy [12]. Another approach is to scan for genomic loci
associated with environmental variables, such as climatic data, for ex-
ample, that could be involved in the adaptation to specific conditions
of the species of interest [13]. There is a growing interest in identifying
factors that influence adaptation in species [14]. Genetic variability
evolves as a result of environmental factors imposing selective pressure
on part of the genome, generating changes in allele frequency in such
regions. Looking for loci associated with environmental variables

requires statistical modeling as GWAS to find an allele distribution
fitting for the chosen variable [13]. In both association study ap-
proaches, it is essential to take into account the population structure
of the sampled individuals [15,16]. Indeed, hierarchical population
structure can cause bias in loci detection, generating an excess of false
positives [15]. The main problem is that without corrections for the ef-
fect of population structure, the underlying null distribution may be in-
sufficient to account for demographic history. In GWAS, Generalized
Linear Mixed Models have been shown to efficiently take into account
the population structure [16]. Studies in maize, potato, and Arabidopsis
revealed that such mixed models led to fewer false positives and were
a powerful method [17–19]. GLMMs are an extension of a generalized
linear models providing a more flexible approach for analyzing non-
normal data when random effects are present [20,21]. The most com-
mon types of random effects are variation among individuals, geno-
types, species, and geographical regions or time periods. For instance,
individuals within clusters (for example, at distances of only some
meters) are genetically more similar than distant individuals between
clusters. GLMMs can more efficiently account for population structure
in comparison with previously used methods [22,23]. Using such
models to detect the correlation between allele distribution and envi-
ronmental data can be performed on samples collected in different
sites, without acquiring population data such as allele frequency at the
sampling sites. GLMMs are fast, while some Bayesian approaches, for
example, require extensive computing time and are therefore more dif-
ficult to apply to very large genetic variability data sets [13,24].

In this study, we tested the use of GLMMs to detect associations be-
tween genetic loci and environmental variables. Then we applied these
models to analyze an A. thaliana SNP data set from different accessions
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[2] and to identify 25 regions that exhibit unusual correlations with cli-
matic variables and contain 18 genes with functions related to temper-
ature stress.

2. Materials and methods

2.1. Simulations

Genotype simulations were performed using the GenomePop2 pro-
gram [25], allowing the simulation of chromosomes and their evolution
under different scenarios. All simulations were performed under a
biallelic model, with independent SNPs, with population sizes of 100 in-
dividuals, and with a mutation rate of 10−4. To reproduce a situation
where different sampling sites are located in different geographical re-
gions, clusters that mimic geographical regions were defined. Ten clus-
terswere run in parallel. In each cluster, 20 populationswere simulated,
and amigration rate of 1%was applied in an islandmodel. For each clus-
ter, a 20-step gradient of selective coefficientwas defined, and each step
value was applied to one population in the cluster. The gradient names
0.01, 0.02, 0.03, 0.05, 0.1, and 0.2 corresponded to selective coefficients
in a range, respectively, of−0.01 to 0.01,−0.02 to 0.02,−0.03 to 0.03,
−0.05 to 0.05,−0.1 to 0.1, and−0.2 to 0.2. For SNPs to which selective
pressure was applied, the initial allele frequency in the population was
set to 0.5. For neutral SNPs, the initial frequency was set as a random
value between 0.1 and 0.9 in each cluster. Each simulation run consisted
of 1000 generations, and 25 runs were performed. Simulations were
repeated eight times for each cluster with new initial allele frequency
for neutral SNPs. A total of 2.105 SNPs under selective pressure and
2.106 neutral SNPs were simulated. In all subsequent analysis, at least
2000 SNPs under selective pressure and 20,000 neutral SNPs were
sampled randomly and independently from the simulated data set.
The selective coefficient applied to an individual was assimilated to
the environmental variable.

2.2. Detection of potentially adaptive loci using generalized linear mixed
models

GLMMs were used to detect SNPs correlated to environmental vari-
ables. The general form of the model (in matrix notation) is

Y ¼ Χβ þ Ζγ þ ε ; ð1Þ

where Y is a column vector, the outcome variable; X is a matrix of the
predictor variables; β is a vector of fixed-effects regression coefficients;
Z is a design matrix for the random effects (the random complement to
the fixed X); γ is a vector of random effect (the random complement to
the fixed β); and ε is a vector of the residual, the part of Y that is not ex-
plained by the model Χβ+ Ζγ.

In GLMMs, environmental variables are introduced as fixed effect,
while geographical proximity is modeled by random effect. In the
model, the matrix Ζγ models the part of the genetic variation that can-
not be explained by the environmental pressures.

A GLMMmodel with a logit link and binomial error distribution was
estimated between each SNP and the selected environmental variable.
The likelihood ratio (LR) and the Wald tests were used to evaluate
each model's performance [22]. For both tests, the null hypothesis cor-
responds to no correlation between a particular SNP and an environ-
mental variable. The Wald test for GLMMs tests the null hypothesis of
no effect by scaling parameter estimates by their estimated standard er-
rors and comparing the resulting test statistic to zero [26]. The LR test
determines the contribution of a single (random or fixed) factor by
comparing the fit (measured as the deviance, that is, minus two times
the log-LR) for models with and without the factor, namely, nested
models. All GLMM models were calculated using the R package lme4.

2.3. Statistical analysis of false and true positive rates

McNemar tests and p value corrections have been applied to test the
effect of the different thresholds of the Wald and the LR tests on false
and true positive rates. An analysis of variance has been applied to test
the sampling effect (e.g., the number of sampled populations, sampled
sites per population, and sampled individuals per site). Friedman and
Wilcoxon paired tests have been used to test the effect of the different
selection intensities on the rate of true positives.

2.4. Arabidopsis thaliana SNP dataset

Eighty A. thaliana ecotypes sampled across Europe have been sub-
mitted for genomic DNA sequencing in the frame of the 1001 Genomes
Project (http://1001genomes.org) by Cao et al. [2]. Sequence readswere
mapped against the Columbia ecotype reference genome to detect ge-
netic polymorphisms [2]. From this data set, we retained 78 ecotypes,
removing two samples for which data quality was lower. SNPs were
filtered according to the following criteria: only biallelic sites were
retained, positions for which genotyping data were not available for
more than two ecotypes whichwere discarded, and aminimal coverage
threshold of 5 was applied. The resulting filtered data correspond to a
high density of 1 SNP/125 bp. The 948,330 SNPs of the filtered data set
were distributed across the five A. thaliana chromosomes as follows:
chr1 (247,859 SNPs), chr2 (146,826), chr3 (179,642), chr4 (153,061),
and chr5 (220,942).

The climatic data were extracted from the WorldClim database
(http://www.worldclim.org) with a spatial resolution of 30 arcsec.
We used the R package raster for that purpose, according to the GPS co-
ordinates of each sampling site (http://1001genomes.org/projects/
MPICao2010/index.html). The averageminimal temperaturewas calcu-
lated over the period from April to June, corresponding to spring in
which plants are under vegetation in all sampled sites.

The detection of SNP markers potentially associated with minimal
temperature was conducted as described above using GLMM.

3. Results and discussion

3.1. Simulations

3.1.1. Allele frequency and selection intensities
We evaluated the effect of the selective intensities on allele fre-

quencies of our simulation. For this purpose, we generated a plot of
allele frequencies under the different intensities of selection
(Fig. 1). A clear structuring of allele frequencies was observed in
clusters when the gradient of selection intensity was strong (gradi-
ent = 0.05–0.2). For a gradient of selection of 0.03 and 0.02, the
structuring of allele frequencies in the cluster was present, although
it was lower than that under strong selection. Finally, with a weaker
gradient of selection (0.01), the structuring was not discernible.

3.1.2. Influence of the Wald and the LR tests on true and false positives
False positives are a major concern when using GLMMs in association

studies. A strategy adopted by Joost et al. [22] was to jointly use theWald
and the LR test results to reach a higher stringency. In the frame of our
study, we have investigated the influence of the two tests over the false
positive and false negative rates obtained when using GLMMs. Results
are presented for the gradient 0.05 which selection intensities values
were assimilated to the environmental variable, but similar results were
obtained for all selection intensities. For each test, four different thresh-
olds 5.10−5, 5.10−4, 5.10−3, and 5.10−2 were used.

The false positive rate was strongly influenced by the LR test
threshold, but not by the Wald test threshold; differences of 14.7%
(CI, [11.8; 17.57]) and 0.6% (CI, [0.3; 0.9]) between thresholds were
obtained for the LR and the Wald tests, respectively. In large-scale
genomic experiments involving thousands of statistical tests
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