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Common quantitative trait locus (QTL) mapping methods fail to analyze survival traits of skewed normal distri-
butions. As a result, some mapping methods for survival traits have been proposed based on survival analysis.
Under a singleQTLmodel, however, thosemethodsperformpoorly in detectingmultipleQTLs andprovide biased
estimates of QTL parameters. For sparse oversaturated model used to map survival time loci, the least absolute
shrinkage and selection operator (LASSO) for Cox regression model can be employed to efficiently shrink most
of genetic effects to zero. Then, a few non-zero genetic effects are re-estimated and statistically tested using
the standard maximum Cox partial likelihood method. Simulation shows that the proposed method has higher
statistic power for QTL detection than that of the LASSO for logarithmic linear model or the interval mapping
based on Cox model, although it somewhat underestimates QTL effects. Especially, computational speed of
the method is very fast. An application of this method illustrates mapping main effect and interacting QTLs for
heading time in the North American Barley Genome Mapping Project.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Survival traitsmeasured as time to event usually comewith two fea-
tures: skewed distributionwith heavier right tail and censored observa-
tions [1]. By incorporating survival analysis theory into the traditional
quantitative trait loci (QTL) mapping frameworks, the QTL mapping
for survival traits has been introduced to efficiently locate survival
time loci, allowing a better understanding of genetic architectures
underlying survival traits. Broman [2] considered a cure-rate model
that treated the mice alive at the end of the study as cured ones when
mapping QTL of the time to death of bacterial infection. The survival
time was modeled by log-normal distribution. A Cox proportional
hazards (PH) model was proposed to characterize the effects of the QTL
genotype on failure time [3], where model parameters and computed
LOD scores were estimated by a variant of EM algorithm [4]. Diao et al.
[5] also used a Cox PH model with a Weibull baseline hazard function
to locate QTLs, and then developed efficient likelihood-based inference
procedures. These two Cox PH models belong to parametric models for
mapping survival time loci, due to the component of estimating baseline
hazard functions. Along this line, parametric Cox PH model for mapping
QTLs of heading time in rice was optimized by Luo et al. [6], where the
best baseline hazard distribution was selected from six commonly used

survival distributions. Other than parametric algorithms, Diao and Lin
[6] developed semi-parametric statistical methods for Cox PH model
to search for survival trait loci. Without need to estimate baseline
hazard functions, Fang [7] proposed further a simple and efficient non-
parametric approach to estimate QTL parameters through partial likeli-
hood function. Using simulated data with different structures, Moreno
et al. [8] systematically compared the parametricmodel based onWeibull
distribution, semi-parametric model, and classical interval mapping
based on the normal distribution. Additionally, accelerated failure time
model was also used tomodel the genetic effects of QTL on survival traits
[9–11].

All thesemethods ofmapping survival traits are developed for inter-
val mapping, where the whole genome is scanned, but only one QTL is
analyzed at each time. For survival traits controlled by multiple QTLs,
this mapping strategy is suboptimal due to the existence of linked
QTLs. Over the past decade, QTLmappingmethods have beendeveloped
to simultaneously analyze multiple QTLs for normal traits. Mapping
multiple QTLs by either non-Bayesian or Bayesian methods is in fact
a model selection problem about selecting QTLs from a large number
of genetic loci over the entire genome. Although Bayesian shrinkage
analysis greatly facilitates modeling multiple QTLs and the shrinkage
estimation, full Bayesian shrinkage mapping is practically infeasible
due to high computational cost [12–17]. As an equivalent strategy to
Bayesian shrinkage estimation with double exponential priors for
regression coefficients [18], the LASSO [19] is widely used to solve for
the oversaturated linear model. Most recently, Liu etc. [20] employed
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a fast LASSO with coordinate descent algorithm [21] to successfully
search for the QTLs of normal traits. To date, however, no multiple-
QTL mappingmethod is reported for survival traits. In this study, a little
modified LASSO for Cox regression model [22], as a non-parametric
approach, is used to efficiently analyze sparse oversaturated model for
mapping survival loci. Then for the subset of selected loci, their genetic
effects are unbiasedly estimated and statistical tests are carried out
using the standardmaximum Cox partial likelihoodmethod [24]. Simu-
lation is conducted to investigate statistical efficiency of the mapping
method proposed. A dataset from the North American Barley Genome
Mapping Project is analyzed to map the QTLs for heading times.

2. Method

2.1. Multiple-QTL proportional hazards model

Assume that n individuals from a backcross (BC) population are ob-
served for a survival trait, and are genotyped for m co-dominant
markers with known genetic linkage map. To map the QTLs of the ob-
served survival trait, entire genome is evenly divided by k loci that are
1 or 2 cM away from each other, and the candidates of QTLs include
the genotyped markers as well as ungenotyped loci between markers.
Our genetic design implies that there are two genotypes at each locus
on chromosome, denoted by QQ and Qq. With the proportional hazard
model, the effects of the QTL candidates can be formulated as

λ tið Þ ¼ λ0 tið Þexp
Xp

j¼1
bjxi j

� �
ð1Þ

where ti is survival time for the ith individual, λ(ti) is the hazard func-
tion evaluated at time ti, λ0(t) is a common baseline hazard function,
p = m + k is the number of the QTL candidates, bj is additive effect of
the jth QTL candidate, and xij is the indicator variable of the jth QTL can-
didate for individual i determined by QTL genotypes. If the QTL candi-
date is the genotyped marker, xij is defined as +1 for QQ and −1 for
Qq, respectively. Otherwise for any locus between two markers, the
indicator variable can be estimated by its expectation conditional on
flanking markers, according to least square method by Haley and
Knott [23]. Specifically, the expectation is calculated as

E xi j
� �

¼ þ1ð Þp QQð Þ þ −1ð Þp Qqð Þ ¼ p QQð Þ−p Qqð Þ

where p(QQ) and p(Qq) are probabilities for two QTL genotypes
estimated by flanking markers.

2.2. Shrinkage estimation of genetic effects

Usually survival data are censored because of random loss to follow-
up, failures from competing causes, or limited duration of the experi-
ment. Besides, base hazard function inmodel (1) is unknown in general.
To address these issues, Cox partial likelihood algorithmwas developed
to handle censoring problem without estimating baseline hazard
function. Based on model (1), the Cox's partial likelihood [24] can be
written as

PL ¼ ∏
n

i¼1

exp
Xp

j¼1
bjxl ið Þ j

� �
Xl ið Þ

r¼1
exp

Xp
j¼1

bjxr j
� �; ð2Þ

where l(i) for l= 1, 2,…, t denotes the index at lth survival time in the
increasing list of unique survival times for ith individuals.

By defining μ= ∂log L/∂η, A=− ∂2 log L/∂ηηT and z= η+ A− 1μ
with η= b′x, the logarithm of log-partial likelihood is approximated by
a two term Taylor series, as follows

log PLð Þ ¼ z−bTx
� �T

z−bTx
� �

: ð3Þ

where, b= [b1, b2, ⋯, bp] and x= [x1, x2, ⋯, xn]T with xi = [xi1, xi2, ⋯, xip]
Decomposing matrix A into VTV by Cholesky decomposition, we
transform objective function (3) into

log PLð Þ ¼ y−bTx0� �T
y−bTx0� �

: ð4Þ

where y = Vz and x′ = Vx. In QTL mapping with linkage analysis, the
number of estimated parameters is far greater than the sample size.
Moreover, the number of QTLswith non-zero genetic effects is very lim-
ited. The LASSOwith coordinate descent algorithm [21,25] can be there-
fore employed to efficiently shrink most of genetic effects to be zero by
minimizing

y−bTx0� �T
y−bTx0� �

þ λjbj: ð5Þ

where λ is a tuning parameter, which will be chosen through cross val-
idation. Since both y and x′ are the function of parameter b, iterations
are required in solving the model parameters with the LASSO.

Table 1
Mean estimates and standard deviations (in parentheses) of QTL positions obtained with three mapping methods for the simulated datasets.

Sample size Method Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

True position 23 56 49 94 69 35 93 80 27 79
150 Cox-LASSO 23.9(2.3) 56.6(1.8) 50.0(2.5) 94.9(2.6) 70.3(3.0) 34.5(2.3) 94.1(2.0) 80.7(2.6) 26.4(2.6) 77.9(2.3)

Gau-LASSO 23.2(3.1) 56.8(1.3) 49.8(2.4) 94.0(3.0) 69.5(2.7) 34.6(2.5) 94.5(1.9) 81.0(1.3) 26.2 (2.2) 80.1(1.9)
Cox-LS 28.5(5.5) 74.0(5.3) 54.3(8.2) 90.2(7.2) – 32.17(6.7) 98.5(3.5) 81.3(6.6) – –

300 Cox-LASSO 24.2(1.6) 56.6(1.3) 49.9(2.3) 95.1(2.1) 70.0(2.8) 34.7(2.3) 94.4(1.6) 80.8(1.7) 26.0(2.2) 79.9(2.4)
Gau-LASSO 23.9(2.7) 56.6(1.6) 49.6(2.5) 94.9(2.8) 70.5(2.9) 34.8(2.5) 94.0 (2.1) 80.9(2.3) 26.5(2.3) 79.7(2.6)
Cox-LS 29.3(4.9) 74.1(4.0) 55.7(7.1) 90.3(6.3) – 32.7(5.9) 95.7(2.8) 80.9(5.0) 22.8(7.9) –

Table 2
Mean estimates and standard deviations (in parentheses) of QTL effects obtained with three mapping methods for the simulated datasets.

Sample size Method Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

True effect 1.80 2.30 1.02 1.40 −0.52 1.00 −0.95 1.55 0.65 −1.10
150 Cox-LASSO 1.17(0.25) 1.52(0.3) 0.68(0.15) 0.91(0.21) −0.48(0.08) 0.68(0.17) −0.6(0.13) 0.98(0.2) 0.5(0.09) 1.17(0.25)

Gau-LASSO 0.55(0.21) 0.75(0.15) 0.41(0.21) 0.47(0.13) −0.19(0.19) 0.39(0.11) 0.17(0.09) 0.22(0.07) 0.23(0.1) 0.29(0.07)
Cox-LS 0.69(0.12) 0.8(0.11) 0.4(0.07) 0.42(0.09) – 0.33(0.04) 0.31(0.05) 0.39(0.07) – –

300 Cox-LASSO 1.14(0.18) 1.42(0.2) 0.62(0.12) 0.86(0.14) −0.36(0.07) 0.61(0.11) −0.6(0.11) 0.97(0.14) 0.37(0.08) −0.68(0.12)
Gau-LASSO 0.61(0.13) 0.68(0.09) 0.46(0.18) 0.36(0.13) −0.27(0.21) 0.38(0.08) −0.29(0.25) 0.39(0.13) 0.27(0.17) 0.37(0.14)
Cox-LS 0.68(0.08) 0.79(0.08) 0.37(0.06) 0.41(0.06) – 0.22(0.03) 0.22(0.02) 0.35(0.06) 0.2(0.01) –
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