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Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is currently viewed as the most
precise technique to quantify levels of messenger RNA. Relative quantification compares the expression of a
target gene under two or more experimental conditions normalized to the measured expression of a control
gene. The statistical methods and software currently available for the analysis of relative quantification of RT-
PCR data lack the flexibility and statistical properties to produce valid inferences in a wide range of
experimental situations. In this paper we present a novel method for the analysis of relative quantification of
qRT-PCR data, which consists of the analysis of cycles to threshold values (CT) for a target and a control gene
using a general linear mixed model methodology. Our method allows testing of a broader class of hypotheses
than traditional analyses such as the classical comparative CT. Moreover, a simulation study using plasmode
datasets indicated that the estimated fold-change in pairwise comparisons was the same using either linear
mixed models or a comparative CT method, but the linear mixed model approach was more powerful. In
summary, the method presented in this paper is more accurate, powerful and flexible than the traditional
methods for analysis of qRT-PCR data. This new method is especially useful for studies involving multiple
experimental factors and complex designs.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Reverse transcription (RT), followed by quantitative polymerase
chain reaction (qPCR), is currently the method of choice to quantify
levels of messenger (m)RNA [1]. At present, there are several
instrumentations and chemistries available for implementation of
this technique, all of which rely on the same fundamental principle
[2]. This principle consists of the specific amplification of cDNA from a
target transcript in several cycles of PCR, coupled with measurement
of a fluorescence intensity that is assumed to be directly proportional
to the amount of product in each cycle [3]. This methodology has been
extensively validated, and its accuracy and specificity have been
proved for the different chemistries available [4].

The quantitative output of the qRT-PCR consists of an amplification
curve, which is composed of a set of cycle numbers and associated
fluorescence intensities that are ulteriorly summarized in a single
value called the cycles to threshold (CT). The CT is a unitless value
defined as the fractional cycle number at which the sample

fluorescence signal passes a fixed threshold above the baseline.
Because the threshold is set within the exponential amplification
phase, the CT is proportional to the (negative) log of the initial
transcript copy number (or log-transcript concentration) of the
assayed sample. The constant of proportionality of the CT to the log-
concentration is the amplification efficiency (E).

Absolute and relative quantification strategies can be applied to
measure mRNA abundance using qRT-PCR [3,5]. Relative quantifica-
tion compares the expression of a target gene under various
conditions (treatments) normalized to the measured expression of
an internal control [6] (assumed to be constantly expressed across
samples). In general, the numerous mathematical expressions avail-
able for such calculation [7–16] may be summarized by the equation
below [6]:

FCtrt1:trt2 =
ETarget

� �ΔCTðtargetÞ trt2 − trt1ð Þ

EControlð ÞΔCTðcontrolÞ trt2 − trt1ð Þ ; ð1Þ

where, FCtrt1:trt2 is the relative expression (fold-change) of the target
gene in a sample from treatment 1 compared to a sample from
treatment 2, ETarget and EControl are the amplification efficiencies of the
target and the control genes, respectively, and ΔCTðtargetÞ trt2 − trt1ð Þ
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and ΔCTðControlÞ trt2 − trt1ð Þ correspond to the CT of the treatment 2
minus the CT of the treatment 1, for the target and control genes,
respectively. If both amplification efficiencies take the maximum
possible value (E=2), expression (1) becomes the familiar 2−ΔΔCT

expression [9]. Moreover, almost any other mathematical expression
or method available in the literature to calculate fold-change is a
variant of Eq. (1). The differences among variants of Eq. (1) refer
mainly to estimation of the efficiency either from a relative standard
curve [5] or from individual amplification curves [7,13].

The methods based on expression (1) are mathematical equations
devised to calculate fold-change between two samples. In some cases,
these equations, however, lack the statistical formalism needed to
draw valid inferences, especially when multiple levels of biological
replicates from each experimental group are assayed [7,10,17]. More-
over, many ad-hoc approaches associated with formulas similar to Eq.
(1) have been used with the objective of generating a set of
“companion” P-values or standard errors [9,11]. However, few of
them are valid in the presence of both biological and technical
replication. Currently, the REST® software [17] is one of the few
programs that implements a valid statistical analysis to test
hypotheses and estimate the fold-changes using Eq. (1). However,
such software is limited to the analysis of pairwise comparisons with
respect to a control group, under a completely randomized design.

Even if a valid statistical test can be implemented for pairwise
contrasts based on Eq. (1), comparing two treatments at a time in the
context of a large experiment may be inefficient and lead to reduced
power. In such case, a linear model could be used to analyze data from
all treatment groups simultaneously in the same fashion of classical
analysis of variance (ANOVA) techniques.

A linear mixed model [18] was recently proposed for the
implementation of the so-called analytical method [10]. Such a
model is potentially more flexible than the existing alternatives, but
it makes the strong assumption that there is a common random effect
for the control and test genes in each biological replicate. Assuming no
gene-specific biological effects is not realistic, as it is expected that
constitutively expressed genes will have more similar expression
pattern across biological replicates than regulated genes. Violation of
such assumption, in turn, may lead towrong inferences. Consequently,
there is a need for a formal statistical method for analysis of the
relative quantification RT-PCR data that allows accommodation of
more complex experimental designs (such as blocking factors) and
testing of general hypotheses (including interactions, pairwise and
group contrasts).

The objective of this paper is to present a novel, flexible method for
analysis of relative quantification RT-PCR data using linear mixed
models. The main advantage of the model is that it can be used to
compute valid P-values associated with any general linear hypothesis
of interest. Additionally, the model allows proper accounting of all
sources of variation and it is expected to be more powerful than
methods based on individual pairwise comparisons. In this paper we
use a variety of approaches to validate the proposed methodology, to
compare it with existing methods, and to illustrate its flexibility. First,
our model is compared to other alternatives using a real dataset.
Second, a model-free simulation based on the same dataset is used for
comparative validation of the methodology. Lastly, several datasets
are analyzed and different linear models are compared.

Results

Motivating example

Quantitative RT-PCR was used to study expression of the gene
diazepam binding inhibitor (DBI) in the brain of piglets subject to
weaning and social isolation treatments [19]. The experimental layout
followed a randomized complete block design (n=3 litters) and the
treatments consisted of a 2×2 factorial combination of weaning

(early-weaned or non-weaned) and social isolation (isolated or
control).

Preliminary assays indicated that Sus scrofa 18S ribosomal RNA
(18S) was suitable for use as an endogenous control gene and that the
amplification efficiency for primers of the two genes (18S and DBI)
was close to two [19]. All reactions were performed in triplicate but
some observations were excluded from the analysis because of
evidence of non-specific amplifications (as revealed by dissociation
curve analyses) [20]. The following model (denoted as Model I) was
used for the analysis of the joint expression of DBI and 18S:

ygijkr = TGgi
T + lgj + Bgijk + Dijk + egijkr ;

where ygijkr is the CT obtained from the thermocycler software for the
gth gene (18S or DBI) from the rth well, corresponding to the kth
animal in the jth litter subjected to the ith treatment, TG⁎gi is the
effect of treatment i in the expression of gene g, lgj~N(0, σlg

2 ) is a
gene-specific random effect of the jth litter, Bgijk~N(0,σBg

2 ) is a gene-
specific random effect of the kth piglet in the jth litter, Dijk~N(0,σD

2) is
a random sample-specific effect (common to both genes), and egijkr~
N(0,σe

2) is a residual term. The sample-specific effect, Dijk, captures
differences among samples that are common to both genes,
particularly those that affect total mRNA concentration, such as
differential extraction or amplification efficiencies among samples.
The treatments consisted of the combination of two factors, and the
sub-index i=1, 2, 3, 4 corresponds to: early weaning+control
(EWC), early weaning+isolation (EWI), non-weaning+control
(NWC), and non-weaning+isolation (NWI), respectively.

Model I was fit to the data using the SAS mixed procedure [21] and
a residual analysis was performed to check model assumptions. Tests
of differential expression among groups were performed for the
interaction of weaning by isolation and for pairwise treatment
differences (simple effects). Point and interval estimates of fold-
changes were approximated from the linear contrasts (in the log
scale) by back transformation. The fold-changes were also estimated
with the 2−ΔΔCT method [9] (ΔCT) using a procedure presented in the
original work [9].

In addition, an alternative linear model (denoted as Model II) was
also used to analyze the data:

ygijkr = TGgi
T + lj + Dijk + egijkr :

Model II is a simplified version of Model I, without the gene-
specific sample and litter effects, and is equivalent to a previously
published model for analysis of amplification curve data [18]. We
anticipate that Model II is under parameterized and it may lead to
wrong inferences.

Testing and estimating differential expression

Contrarily to the ΔCT procedure, Model I yielded a formal test for
the interaction between isolation andweaning. Therewas no evidence
of interaction effect between isolation and weaning on the expression
of DBI (P=0.829), but there was a significant three-fold decrease in
DBI gene expression due to isolation (P=0.003). As mentioned, the
traditional analysis method (ΔCT) does not allow testing of this
interaction, but it may be still used to estimate the fold-change of
pairwise comparisons (Fig. 1).

While the estimates of fold-change were similar using Models I, II
and ΔCT, the confidence intervals for the fold-changes based on ΔCT
were wider than those based on Models I and II, and the general
conclusions were not equivalent. For example, Models I and II
indicated a significant decrease in the expression of DBI in response
to social isolation in both early-weaned and non-weaned animals
(P=0.013 and P=0.019 respectively from Model I), while ΔCT only
detected the contrast EWI – EWC as significant (P=0.03). At a
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