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Development of statistical methods has become very necessary for large-scale correlation analysis in the
current “omic” data. We propose ranking analysis of correlation coefficients (RAC) based on transforming
correlation matrix into correlation vector and conducting a “locally ranking” strategy that significantly
reduces computational complexity and load. RAC gives estimation of null correlation distribution and an
estimator of false discovery rate (FDR) for finding gene pairs of being correlated in expressions obtained by
comparison between the ranked observed correlation coefficients and the ranked estimated ones at a given
threshold level. The simulated and real data show that the estimated null correlation distribution is exactly
the same with the true one and the FDR estimator works well in various scenarios. By applying our RAC, in the
null dataset, no gene pairs were found but, in the human cancer dataset, 837 gene pairs were found to have
positively correlated expression variations at FDR≤5%. RAC performs well in multiple conditions (classes),
each with 3 or more replicate observations.

© 2010 Elsevier Inc. All rights reserved.

A great advance of “omic” technologies has led to an unprecedented
development of large-scale data, for example, microarray data, microRNA
data, and protein array data. The large-scale omic data let us take a global
insight into complex biological procedures, interactions between drugs
and proteins, and pathological mechanisms of complex diseases such as
diabetes, stroke, heart disease, hypertension, and various cancers. For
microarray data, gene expression profiles provide a clue to cluster or
classify the functional genes into groups because functional genes in a
grouppossiblyhave the sameor similar expressionpatternsunder various
conditions [1–5]. The similar expression patterns may be described by
correlated expressions, including coexpressions [6,7] and coregulations of
gene expressions [6–8]. The correlated expressions between genes can be
measured by Pearson correlation coefficients [9–11]. By using correlation
of geneexpressions, one canbuild clusters ornetworksof functional genes
[9–12]. But like differential expressions of genes, there also exist noises in
the correlated expressions of genes. In other words, there are many
spurious correlated expressions in microarray data due to expression
noise. We therefore reasonably believe that the current various gene
expression networks based on correlation coefficients might have
spurious connections between some genes or spurious correlations,
which lead to misclassification of functional genes. Therefore, to test for
the correlation coefficients between genes in expressions variation is
necessary. Conventionally, one uses correlation analysis to draw a
distinction between genes that are coregulated or coexpressed and
those that do not have a common expression pattern. However, large-
scale data challenge the conventional correlation analysis because a single

threshold α, as a probabilistic criterion for determining whether a single
null hypothesis is acceptable or not, is not valid for testing a large-scale
number of hypotheses. For example, in testing for 10,000 hypotheses, at
least 500 hypotheses are expected to be significant by chance atα=0.05.
Such results, due to too many false positives, cannot be acceptable in
statistics. Although there have been a variety of statistical methods for
identification of genes differentially expressed between treatments or
conditions, no methods for large-scale correlation analysis have been
proposed so far. The main reason is that ranking is indispensable in the
large-scale statistical analysis because multiple-test procedures such as
Bonferroni (B) procedure andBenjanimini-Hochberg (BH)procedure [13]
need to rank a set of p-values while ranking analysis methods such as
significance analysis of microarrays (SAM) [14], ranking analysis of
microarray data (RAM) [15] need to sort a set of statistics such as t-
statistics or modified t-statistics. However, ranking a large two-dimen-
sional correlationmatrixwould lead to the problemof over-memory and/
or over-time (see Discussion section). In this article, we propose a “locally
ranking” strategy togreatly reduce complexity of ranking amatrix anduse
a dissection approach to estimate the null correlation distribution. In
addition, we also develop a new approach to estimate false discovery rate
(FDR) because the current multiple-testing procedures and ranking
analysis methods are not appropriate to our ranking correlation analysis.

1. Methods

1.1. Ranking analysis of correlation coefficients

Let xick be the kth expression value of gene i under condition c
where i=1,…, N (number of genes detected on arrays), k=1,…, Mc

(number of replicate observations in expressions of gene i under
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condition c) and c=1, …, C (number of experimental conditions).
Then a model for the kth expression value of gene i under condition c
is

xick = μ i + τic + eick ð1Þ

where μi is the expression expectation of gene i under the null
hypothesis; τic, effects of condition c on expression variation of gene i;
and eick, the special expression noise of observation k of gene i under
condition c. Eq. (1) does not include association between genes.
Practically, genes would be correlatively expressed or coexpressed if
the conditions have the same or similar regulation effects on their
expression variations. If the conditions show up-regulation effects on
gene i but down-regulation effect on gene j, and vice versa, then their
expressions would be negatively correlated. Therefore, we can use the
traditional correlation coefficient

ρij =
∑
C

c=1
∑
Mc

k=1

xick−μ ið Þ xjck−μ j

� �
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to measure the expression association between genes i and j (ib j)
where σ

i

2 and σ
i

2 are the expression variances of genes i and j,
respectively, in population. According to the model above, the
correlation coefficient in Eq. (2) may be dissected as

ρij = ρ τiτj
� �

+ ρ τiej
� �

+ ρ eiτj
� �

+ ρ eiej
� �

: ð3Þ

The detail derivation of Eq. (3) can be found in Appendix A. It can
be seen from Eq. (3) that if the condition effects (τ) do not
simultaneously change expressions of genes i and j, that is, τic=0
for gene i but τjc≠0 for gene j, or τic≠0 for gene i but τjc=0 for gene
j, or τic=0 and τjc=0 for both genes, then ρij=ρ(τiej)+ρ(eiej) or
ρij=ρ(eiτj)+ρ(eiej), or ρij=ρ(eiej). Therefore, E(ρij)=ρ(τiej)+
ρ(eiτj)+ρ(eiej), which is the expectation of expression correlation
between genes i and j under the null hypothesis that genes i and j do
not simultaneously respond to the condition effects (τ) in differential
expression. In classical correlation analysis, correlation coefficient
between a pair of uncorrelated variables is expected to be zero in large
samples and hence we test if a single observed correlation coefficient
is zero at a given significance level. However, expression noise may
not completely be a random and independent variable because
microarray experiment is often conducted in small samples, almost all
of the correlation coefficients between genes under null hypotheses
are significantly unequal to zero but expected to follow a null
distributionwithmean of zero and variance N0. On the other hand, for
expression associations between many thousands of genes in
microarray experiments, a single significance test at a given
probabilistic level is meaningless. So, to address these two problems,
we have to consider another strategy, a ranking analysis strategy.
Given a threshold Δ, a pair of genes i⁎ and j⁎(i⁎b j⁎) are interestingly
correlated in expressions if and only if

R
i*j*−E ρ

i*j*

� �
N Δ for R

i*j* N 0 and E ρ
i*j*
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E ρ
i*j*
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i*j*

� �
b 0;
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where R is an observed correlation coefficient, * represents an ordered
sequence in which the R or r values are ordered from smallest to
largest, i*j* is the i*j* th gene pair or variable pair in the ordered
sequences. Δ is a threshold chosen to classify a set of observed R-
values into non-interesting group and interesting group. By changing
threshold value, we can obtain a series of non-interesting and
interesting groups of gene pairs for their correlated expressions.

1.2. Estimate of the null correlation distribution

E(ρij) is unknown and hence E(ρi * j *) in Eq. (4) is also unknown. To
make Eq. (4) work, we need to estimate the null correlation
distribution. In Eq. (1), for gene i, the expression expectation μi may
be estimated by the observed overall mean x ̅i and the condition effect
τic may be estimated by intra-group mean – overall mean, that is
τic = x ̅ic− x ̅i and expression noise eick is estimated by an observation
value – intra-group mean, eick = xick− x ̅ic. In addition, σ i

2 in Eq. (2) is
also estimated by s2i = ∑C

c=1∑
mc
k=1 xick− x i̅

� �2
= Cmc−1ð Þ where mc

is a sample size under condition c. Thus, ρ in Eq. (2) may be estimated
by

Rij = R τiτj
� �

+ R τiej
� �

+ R eiτj
� �

+ R eiej
� �

: ð5Þ

Derivation of Eq. (5) can be found in Appendix B. Therefore, E(ρij)
may be estimated by

rij = R τiej
� �

+ R eiτj
� �

+ R eiej
� �

: ð6Þ

For a single E(ρij) value, rij may not be a good estimator due to error
fluctuation, but for a distribution, rij has the same distributionwith E(ρij),
so, after ranking them, ri * j * indeed is a desirable estimate of E(ρi * j *) (see
Results).

1.3. Strategy for ranking a correlation matrix

As correlation coefficients between pairs of variables form a two-
dimensional matrix, ranking a two-dimensional matrix is more
difficult than ranking a one-dimensional vector and this leads to
computer memory overflow error when the number of the correlated
variables is large. To address this technical difficulty, we propose a
“locally ranking” strategy, which consists of five steps:

Step 1. Transform two-dimensional correlation matrix into one-
dimensional correlation vector: Rij→Rs, where s stands for ij,
ib j. We code s=1 for 12, s=2 for 13, ..., s=S for (N−1)N.
Ranking one-dimensional correlation coefficient vector Rs
can avoid the memory overflow error. In the next step, we
solve the problem of computational speed because a large
number of pairs of variables would make computational
speed down.

Step 2. Divide the interval between −1 and 1 into G ordered
subintervals, (r11, r12), (r21, r22), ···, (rg1, rg2), ···, (rG1, rG2),
which depends on number (N) of variables (genes). A pair of
variables is assigned to rank g (or subinterval g) if their
correlation coefficient value falls into the subinterval (rg1,rg2),
g=1, 2, …, G. That is, if Rs∈(rg1,rg2), we then set Rs=Rgt
where rg1 and rg2 are lower and upper boundaries of
subinterval g, and t is the tth pair in subinterval g, t=1, 2,…, Tg.

Step 3. Sort the pairs of variables within subinterval g=1 by R1t
values. Thus, we have a suborder of correlation coefficients,
denoted by R1t *, within subinterval g=1. Asterisk (*)
represents an order in which element values are ranked
from smallest to largest.

Step 4. Repeat step 3 until g=G.
Step 5. Sequentially connect the G suborders to form awhole-ordered

correlation vector.

Since subintervals (r11,r12)b(r21,r22)b···b (rg1,rg2)b···b(rG1,rG2)b
Λ(rG1,rG2) are also anordered sequence, after steps 3, 4, and5, thewhole
vector is ordered.
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