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Abstract The rapid growth of single-cell RNA-seq studies (scRNA-seq) demands efficient data

storage, processing, and analysis. Big-data technology provides a framework that facilitates the

comprehensive discovery of biological signals from inter-institutional scRNA-seq datasets. The

strategies to solve the stochastic and heterogeneous single-cell transcriptome signal are discussed

in this article. After extensively reviewing the available big-data applications of next-generation

sequencing (NGS)-based studies, we propose a workflow that accounts for the unique characteris-

tics of scRNA-seq data and primary objectives of single-cell studies.

Introduction

Multi-institutional collaborative omics studies on the next-
generation sequencing (NGS) platform have generated peta-

bytes of data that constitute ‘big data’ from the perspective
of scale and complexity [1–6]. Particularly, transcriptomics
studies using the RNA-seq technique have become revolution-
ary and powerful [7–9]. Scientists have now moved one step

forward to single-cell RNA sequencing (scRNA-seq) by
employing new protocols for single cell isolation, low-input
RNA extraction, reverse transcription, and unbiased amplifi-

cation [9–13]. Given the high anticipated value of single-cell
transcriptomics, explosive growth of scRNA-seq data is
expected in the next 5–10 years. Consequently, uncovering

the hidden pattern, connectivity, and interactions of such huge

and heterogeneous data will be a major challenge.
Without a doubt, the detailed and extremely-valuable infor-

mation that single-cell technology provides is at a significant

cost due to sophisticated data acquisition, large data-storage
requirements, as well as challenging data processing and man-
agement. Big data incorporate a body of technologies includ-
ing computational parallelization and distribution, data

visualization, and data integration that are used to reveal the
hidden associations within large datasets that are diverse, com-
plex, and of a massive scale. Data-intensive scientific discovery

has been proposed as the 4th paradigm of scientific research
[14], following and interacting with the other three paradigms
– theory, experimentation, and simulation modeling. In 2001,

Doug Laney defined characteristics of big data in three dimen-
sions, i.e., increasing volume (amount of data), velocity (speed
of data I/O), and variety (range of data types and sources) [15].

While agreeing that volume, variety, and velocity are the quan-
titative characteristics of big data, Ivanov et al. [16] added that
variability (the inconsistency the data can show over time) and
veracity (the quality of captured data) are the qualitative char-

acteristics of big data.
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Big-data technology has many applications in biomedical
research [17–20]. Particularly, high-throughput molecular
and functional profiling of patients using NGS or single-cell

technology is the key driving force of precision medicine
[21–24]. By examining the annual growth of scRNA-seq data-
sets uploaded to the NCBI Gene Expression Omnibus (GEO)

database [25] and the increasing number of new articles in
PubMed over the past 7 years that involve scRNA-seq and
big-data (Figure 1), we expect the extensive integration of big

data and scRNA-seq technologies.
In the following sections, we will discuss the characteristics

of single-cell transcriptomics, especially scRNA-seq, data as
examples of big data. We will discuss how to adapt single-

cell transcriptomics study to big-data infrastructure such as
Hadoop and MapReduce.

Transcriptional stochasticity and cellular

heterogeneity

scRNA-seq is always compared to bulk RNA-seq in terms of
signal profile and noise level. In addition to the descriptive key-
word like high resolution, stochasticity and heterogeneity are

also frequently used to feature the single-cell transcription
[26–29]. Most of the scRNA-seq investigators have experience
with zero-inflation transcriptional signals. Some of them tend

to regard this phenomenon as technical dropout. We prefer
to use the phrase ‘‘bimodality” to delineate the signal distribu-
tion, since recent results have shown that the low transcrip-
tional values are biologically meaningful signals rather than

technical dropout. Shalek et al. have revealed the bimodality

of single-cell expression and splicing using both scRNA-seq
and RNA fluorescence in situ hybridization (RNA-FISH)
[30]. The two modes in an expression profile can be attributed

to the ‘‘on” or ‘‘off” transcriptional status. Figure 2 demon-
strates two clusters of cells showing different expression level
and the change of the ratio of on/off status of a marker gene

MYH2 over time during human myoblast cell differentiation
using both scRNA-seq and RNA-FISH [31]. The
aforementioned studies indicate that even from a seemingly

homogeneous population, many genes are expressed in a
stochastically-bursting fashion and their abundance exhibits
a bimodal distribution in the cell population examined. The
traditional RNA-seq analysis method rarely takes such tran-

scriptional bimodality into account. Further investigation on
co-bursting networks have validated the biological significance
of the ‘‘bimodality” rather than just relegating it to technical

dropout [31].
Several computational models have been proposed to ana-

lyze transcriptional stochasticity and cellular heterogeneity in

scRNA-seq data in the context of zero-inflation or bimodality.
Kim and Marioni [32] use a mixture of two Poisson distribu-
tions to model theoretical kinetics for ‘bursty’ gene expression.

However, in the presence of massive variability, the model is
compromised by excessive over-dispersion in read counts.
Kharchenko et al. take the probability of ‘‘dropout” into con-
sideration in their differential-expression algorithm [33]. Pier-

son and Yau proposed using zero-inflated factor analysis to
perform dimensionality reduction [29]. Gu et al. use a mixture
of two negative binomial distributions to model over-dispersed

read counts generated from a gene’s two distinct biological
states: an ‘on’ component and an ‘off’ component [31]. All
of these four studies acknowledge the fact that single-cell tran-

scription signals cannot be solved by unimodal statistics. Gu
et al. first introduced the statistics term ‘‘bimodal proportion”
to measure the ratio of two signal modes in a single-cell pop-

ulation. The functional enrichment of co-bursting transcrip-
tion supports the biological significance of transcriptional
bursting over technical dropout. The value of ‘‘bimodal pro-
portion” ranges from 0 to 1 and notably, it can be compared

across different datasets without additional normalization.

The opportunities and challenges of scRNA-seq

Single-cell transcriptomics provides us unprecedented oppor-
tunity to understand the transcriptional stochasticity and cellu-

lar heterogeneity in great detail, which are crucial for
maintaining cell functions and for facilitating disease progres-
sion or treatment response [34–38]. Such stochasticity and
heterogeneity are always masked in bulk-cell studies [27].

Recent single-cell applications have utilized a broad range of
tissues [28,39–42], stem cell lines [43,44] and cell populations
with clinical backgrounds [45]. The cell types that have been

interrogated using scRNA-seq in the GEO database are briefly
summarized in Table 1.

scRNA-seq is one of the most promising technologies for

single-cell transcriptomics [46,47]. Nevertheless, it also poses
big challenges, largely stemming from the aforementioned
big-data characteristics with regard to the data management,
query, and analysis. There are five ‘V’s to consider for

scRNA-seq data. (1) Volume. NGS data has become one of
the largest big-data domains in terms of data acquisition,

Figure 1 Number of papers/datasets addressing single-cell data

and big data

Searches were performed on January 04, 2016 on http://www.ncbi.

nlm.nih.gov/gds for datasets and http://www.ncbi.nlm.nih.gov/

pubmed for papers. Data were obtained according to the search

criteria as follows filtered by year: (1) for scRNA-seq datasets on

GEO: ‘‘single cell”[All Fields] AND ‘‘Expression profiling by high

throughput sequencing”[Filter]; (2) for scRNA-seq papers on

PubMed: ‘‘single cell”[All Fields] AND (‘‘rna-seq”[All Fields] OR

‘‘rna sequencing”[All Fields] OR (‘‘sequencing”[All Fields] AND

‘‘transcriptome”[All Fields])); and (3) for big-data papers on

PubMed: ‘‘big data”[All Fields] OR ‘‘hadoop”[All Fields].
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