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Abstract Proteome-wide Amino aCid and Elemental composition (PACE) analysis is a novel and

informative way of interrogating the proteome. The PACE approach consists of in silico decompo-

sition of proteins detected and quantified in a proteomics experiment into 20 amino acids and five

elements (C, H, N, O and S), with protein abundances converted to relative abundances of amino

acids and elements. The method is robust and very sensitive; it provides statistically reliable differ-

entiation between very similar proteomes. In addition, PACE provides novel insights into prote-

ome-wide metabolic processes, occurring, e.g., during cell starvation. For instance, both

Escherichia coli and Synechocystis down-regulate sulfur-rich proteins upon sulfur deprivation,

but E. coli preferentially down-regulates cysteine-rich proteins while Synechocystis mainly down-

regulates methionine-rich proteins. Due to its relative simplicity, flexibility, generality and wide

applicability, PACE analysis has the potential of becoming a standard analytical tool in proteomics.

Introduction

Modern proteomics analysis provides the identities and the rel-

ative abundance changes for thousands of proteins per a single
LC–MS/MS experiment [1,2]. However, since many proteins
have multiple functions and the exact function of many pro-

teins is not yet known, this information is not always easy to
rationalize. Pathway analysis [3,4] provides mapping of the
proteome onto more than 160 known signaling pathways

and dozens of metabolic pathways. Nonetheless, molecular
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pathways are often overlapping and inter-related, such a map-
ping is rarely unequivocal. A similar problem plagues the pop-
ular gene ontology (GO) mapping. Ideally, an aggregate

analysis of the proteome state would involve mapping onto a
reasonably small number orthogonal, i.e., non-overlapping
and mutually independent, classification factors that have clear

physico-chemical interpretations. Although mutually orthogo-
nal (‘‘extreme’’) pathways have been constructed for microor-
ganisms [5,6], such constructs are usually artificial, i.e., do not

have clear counterparts at the molecular level.
However, methods to reduce the proteome to a manageable

number of orthogonal entities do exist. For example, proteins
can be broken down into their constituent amino acids (AAs).

Since amino acids in protein sequences are, in general, not
mutually interchangeable (the evidence for which is their sur-
vival of the evolutionary pressure), they represent an orthogo-

nal set for global proteome analysis. And since all organisms
try to minimize the ‘‘cost’’ of protein synthesis by adjusting
their AA content to specific growth conditions [7], it is reason-

able to assume that changes in these conditions will be reflected
in the abundances of the component AAs. Thus, a proteome-
wide AA composition analysis can provide an aggregate fin-

gerprint characterizing the specific state of a given organism.
Unfortunately, the current methods for AA analysis all

possess significant drawbacks. Edman degradation [8], for in-
stance, is limited with regard to the size of polypeptide which

can be interrogated. Meanwhile, acid hydrolysis [9,10] fol-
lowed by quantification with either ninhydrin [11–13] or mass
spectrometry (MS) [14–17] is limited by exposing proteins to

harsh chemical treatment, which in turn completely destroys
unstable AAs, e.g., tryptophan. Even a short hydrolysis dura-
tion leads to deamidation of asparagine and glutamine to

aspartic acid and glutamic acid, respectively [10,18].
As will be shown below, the AA and element analyses of

whole proteomes can provide valuable information on the

ongoing metabolic processes. Here, we present a novel, non-
destructive method of performing such analysis on quantita-
tive data obtained in expression proteomics experiments. The
entire Proteome-wide Amino aCid and Elemental composition

(PACE) analysis is performed in silico, and as it can be applied
to previously acquired data, it can provide fresh insights from
earlier results without a requirement of new experiments. In

addition, this method is platform-independent, i.e., can be
used for data generated with any mass spectrometric, and even
non-mass-spectrometric (e.g., laser fluorescence or antibody-

based) quantitative proteomics platforms.
What relevant biological insights can PACE mapping pro-

vide? At a very basic level, it can answer the question of
whether two given proteomes are different better than any

other known statistical method while providing a quantitative
estimate of this difference and associated P value. PACE map-
ping also yields a fingerprint of the dominant metabolic pro-

cesses and, in some cases, even reveals their character. For
instance, PACE analysis confirms that single-cell organisms
deprived of a single element (e.g., sulfur) during growth exhibit

depletion of this element in their proteins [7]. Analyzing both
our own and published data with PACE, we investigated the
question of whether this depletion is proteome-wide or is in-

stead concentrated in a few highly abundant proteins. We also
used PACE to reveal which AA residues get depleted and to
what degree. Processes not involving nutrient depletion (e.g.,
cold or heat stress) also leave a specific mark in the PACE

domain, which subsequently can be used as a fingerprint for
their recognition. As a novel and informative way of interro-
gating the proteome, which combines relative simplicity, flexi-

bility and wide applicability, PACE has the potential of
becoming a standard analytical tool in proteomics.

Results

Distribution of PACE signal in the proteome

Until very recently, proteomics analyses were unable to reveal
the entire expressed proteome due to the high dynamic range

of protein expression. Thus, in any real-life experiment, a subset
of the total expressed proteome is sampled, representing the
most abundant part of the proteome. To investigate whether

the partial nature of the proteomics data affects the PACE dia-
gram, we analyzed a ‘‘deep proteomics’’ (>50% of the ex-
pressed proteome) literature dataset of the model

cyanobacterium Synechocystis sp. PCC 6803 [19]. The total list
of�2000 quantified proteinswas randomly split into twohalves,
and a PACEAA (Figure 1) and elemental histogram (Figure S1)

were produced for each of the half-proteomes. The visual simi-
larity between the two histograms is confirmed by correlation
analysis (Figure 2;R2 P 0.8 for both correlations). This example
demonstrates that the PACE signal is distributed throughout

the whole proteome, and the partial nature of real-life proteo-
mics data does not affect the PACE analysis fatally.

Detection of small differences between proteomes

Toanswer the question as towhether the observed proteome dif-
ferences between two cellular states are statistically significant,

one typically needs to use principal component analysis (PCA)
or a similar statistical method to differentiate two groups, each
consisting of multiple replicate analyses. In the absence of a pri-
ori knowledge of statistics associated with protein abundances

(each protein being, strictly speaking, a separate statistical en-
tity), there is no easy method to assign statistical significance
to a difference, if only two proteomics datasets are available.

However, this task becomes solvable with PACE analysis, as
the following example demonstrates. In this example, a pair of
measured proteomes (lists of�500 protein identities and respec-
tive abundances; T1 and T2) represents two technical replicates
of the same proteome B1, while a third measured proteome (B2)
represents a separate biological replicate. The protein abun-

dances of the same proteome analyzed repeatedly (technical rep-
licates) are affected by random, statistically independent errors
in the measured abundances of individual proteins, while non-
identical but biologically similar proteomes (biological repli-

cates) vary in a fundamentally different way, where abundances
of the proteins within the same pathway are statistically linked.
A simple comparison through the correlation coefficientR gives

similar values when T1 and T2 are compared (R2 = 0.9999) as
well as for the similarity between T2 and B2 (R2 = 0.9989),
and provides no estimate for P values of the differences (Fig-

ure 2A). The failure of standard approaches to robustly differen-
tiate between the biologically unique samples as compared to
technical replicates of the same sample is further demonstrated

by unsupervised PCA of the data (Figure 2A). Here, the PCA
model yields a nonsensical negative Q2 value, illustrating the
inability to separate these datasets from each other.
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