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Abstract

Interpretation of Human Immunodeficiency Virus 1 (HIV-1) genotypic drug resistance is still a major challenge in the follow-up of antiviral

therapy in infected patients. Because of the high degree of HIV-1 natural variation, complex interactions and stochastic behaviour of evolution, the

role of resistance mutations is in many cases not well understood. Using Bayesian network learning of HIV-1 sequence data from diverse subtypes

(A, B, C, F and G), we could determine the specific role of many resistance mutations against the protease inhibitors (PIs) nelfinavir (NFV),

indinavir (IDV), and saquinavir (SQV). Such networks visualize relationships between treatment, selection of resistance mutations and presence of

polymorphisms in a graphical way. The analysis identified 30N, 88S, and 90M for nelfinavir, 90M for saquinavir, and 82A/Tand 46I/L for indinavir

as most probable major resistance mutations. Moreover we found striking similarities for the role of many mutations against all of these drugs. For

example, for all three inhibitors, we found that the novel mutation 89I was minor and associated with mutations at positions 90 and 71. Bayesian

network learning provides an autonomous method to gain insight in the role of resistance mutations and the influence of HIV-1 natural variation.
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We successfully applied the method to three protease inhibitors. The analysis shows differences with current knowledge especially concerning

resistance development in several non-B subtypes.
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1. Introduction

Human Immunodeficiency Virus (HIV) escapes the inhibi-

tory effect of antiretroviral drugs by selection of mutations that

increase resistance against those drugs. To obtain an effective

therapy, it is thus necessary to use antiretroviral drugs for which

the virus remains susceptible. Genotypic interpretation systems

predict the susceptibility or therapy response for various drugs

(Shafer, 2002; Van Laethem et al., 2002), based on the presence

of mutations at positions associated with drug resistance.

Unfortunately, the role of many resistance mutations remains

unsufficiently known, as well as the role of HIV-1 natural

variation. This variation within the HIV main group is reflected

in a subtype system with 9 identified subtypes and 16

Circulating Recombinant Forms (CRFs). In addition, unclassi-

fied strains and new recombinants are increasingly reported.

Different prevalences of known resistance-associated muta-

tions and new mutations are seen in different subtypes (Frater

et al., 2001; Grossman et al., 2001; Brindeiro et al., 2002;

Ariyoshi et al., 2003; Parkin and Schapiro, 2004). With a few

exceptions, these differences in prevalence could not be

explained by different genetic barriers because of different

codon usage (Turner et al., 2004). In previous work, we used

Bayesian network (BN) learning to demonstrate how poly-

morphisms may influence how drug-associated mutations get

selected. These explained some notable subtype differences

that have been observed for resistance development against

nelfinavir (Deforche et al., 2006).

In this work we present the application of Bayesian network

learning to study development of resistance against three

protease inhibitors (PIs): nelfinavir (NFV), indinavir (IDV), and

saquinavir (SQV). Results were compared in the context of

cross-resistance within the class of PIs.

A Bayesian network (BN) is a probabilistic model that

describes statistical independencies between multiple vari-

ables. In this work, we learn Bayesian networks from

observations of the variables. In this way, the best Bayesian

network is searched that explains a maximum of the observed

correlations in the data using a minimum number of direct

influences. Dependencies are visualized in a directed acyclic

graph and form the qualitative component of the BN. In this

graph, each node corresponds to a variable, and a directed arc

(arrow) between nodes represents a direct influence. Mathe-

matically, a Bayesian network provides a refactoring of the

Joint Probability Distribution (JPD) of the data, using Bayes’

rule. As a BN simplifies the JPD, it provides an effective model

that summarizes statistical properties of the data.

Within the study of drug resistance, one often refers to a

mutation that is selected as a first mutation as a major mutation

(Shafer, 2002; Johnson et al., 2004). Similarly, a minor

mutation further increases resistance only in presence of other

mutations, or compensates for a possible fitness impact of other

mutations, and is therefore selected only in presence of these

other mutations. Although these concepts are not rigorously

defined, conditional independencies in the networks allow us to

identify major and minor mutations, in agreement with these

definitions.

2. Materials and methods

Data was derived from five clinical databases: Portugal,

Belgium, Israel, Brazil and an international database

containing sequences from subtypes other than subtype B.

In total we had access to 4911 sequences. Protease (PRO)

and partial reverse transcriptase (RT) HIV-1 sequences from

protease inhibitor (PI) naive patients and from patients

treated with only experience to NFV, IDV, or SQV as only PI,

either unboosted or boosted with ritonavir, were trimmed to

the first 350 amino-acids. At most one treated sequence and

one naive sequence per patient were included and identical

sequences were removed. RT inhibitor experienced patients

were included in the PI naive patient population, since

no resistance to RT inhibitors is expected in the protease

gene.

The analysis followed closely the method described in

Deforche et al. (2006). Subtyping was done using a

phylogenetic analysis (de Oliveira et al., 2005). We identified

wild type polymorphisms based on a prevalence greater than

10% in untreated patients and determined treatment

associated mutations by testing for independence from

treatment using a Cochran–Mantel–Haenszel x2 test, stratify-

ing in each combination of subtype and database. The

statistical analysis was corrected for multiple comparisons

using Benjamini & Hochberg with a False Discovery Rate of

0.05. The data sets for Bayesian network were also stratified

for an equal ratio of treated and untreated sequences within

each combination of subtype and database, and included next

to treatment experience, Boolean variables indicating pre-

sence of each treatment associated mutation and presence of

polymorphic amino acids. Bayesian network learning was

done by searching using a simulated annealing heuristic for

the most probable network structure using a Bayesian scoring

metric. A non-parametric bootstrap was performed by

resampling from the sequences, to assess the robustness of

network features.

In the final networks, we do not show the obvious strong

antagonistic direct influences between different amino acids at

single residue. Only network features (presence or absence of

arcs) with a bootstrap higher than 65% were considered

robust, and only robust arcs are shown. To reduce the
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