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Abstract

Interpretation of Human Immunodeficiency Virus 1 (HIV-1) genotypic drug resistance is still a major challenge in the follow-up of antiviral
therapy in infected patients. Because of the high degree of HIV-1 natural variation, complex interactions and stochastic behaviour of evolution, the
role of resistance mutations is in many cases not well understood. Using Bayesian network learning of HIV-1 sequence data from diverse subtypes
(A, B, C, F and G), we could determine the specific role of many resistance mutations against the protease inhibitors (PIs) nelfinavir (NFV),
indinavir (IDV), and saquinavir (SQV). Such networks visualize relationships between treatment, selection of resistance mutations and presence of
polymorphisms in a graphical way. The analysis identified 30N, 88S, and 90M for nelfinavir, 90M for saquinavir, and 82A/T and 461/L for indinavir
as most probable major resistance mutations. Moreover we found striking similarities for the role of many mutations against all of these drugs. For
example, for all three inhibitors, we found that the novel mutation 891 was minor and associated with mutations at positions 90 and 71. Bayesian
network learning provides an autonomous method to gain insight in the role of resistance mutations and the influence of HIV-1 natural variation.
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We successfully applied the method to three protease inhibitors. The analysis shows differences with current knowledge especially concerning

resistance development in several non-B subtypes.
© 2007 Published by Elsevier B.V.
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1. Introduction

Human Immunodeficiency Virus (HIV) escapes the inhibi-
tory effect of antiretroviral drugs by selection of mutations that
increase resistance against those drugs. To obtain an effective
therapy, it is thus necessary to use antiretroviral drugs for which
the virus remains susceptible. Genotypic interpretation systems
predict the susceptibility or therapy response for various drugs
(Shafer, 2002; Van Laethem et al., 2002), based on the presence
of mutations at positions associated with drug resistance.
Unfortunately, the role of many resistance mutations remains
unsufficiently known, as well as the role of HIV-1 natural
variation. This variation within the HI'V main group is reflected
in a subtype system with 9 identified subtypes and 16
Circulating Recombinant Forms (CRFs). In addition, unclassi-
fied strains and new recombinants are increasingly reported.
Different prevalences of known resistance-associated muta-
tions and new mutations are seen in different subtypes (Frater
et al., 2001; Grossman et al., 2001; Brindeiro et al., 2002;
Ariyoshi et al., 2003; Parkin and Schapiro, 2004). With a few
exceptions, these differences in prevalence could not be
explained by different genetic barriers because of different
codon usage (Turner et al., 2004). In previous work, we used
Bayesian network (BN) learning to demonstrate how poly-
morphisms may influence how drug-associated mutations get
selected. These explained some notable subtype differences
that have been observed for resistance development against
nelfinavir (Deforche et al., 2006).

In this work we present the application of Bayesian network
learning to study development of resistance against three
protease inhibitors (PIs): nelfinavir (NFV), indinavir (IDV), and
saquinavir (SQV). Results were compared in the context of
cross-resistance within the class of Pls.

A Bayesian network (BN) is a probabilistic model that
describes statistical independencies between multiple vari-
ables. In this work, we learn Bayesian networks from
observations of the variables. In this way, the best Bayesian
network is searched that explains a maximum of the observed
correlations in the data using a minimum number of direct
influences. Dependencies are visualized in a directed acyclic
graph and form the qualitative component of the BN. In this
graph, each node corresponds to a variable, and a directed arc
(arrow) between nodes represents a direct influence. Mathe-
matically, a Bayesian network provides a refactoring of the
Joint Probability Distribution (JPD) of the data, using Bayes’
rule. As a BN simplifies the JPD, it provides an effective model
that summarizes statistical properties of the data.

Within the study of drug resistance, one often refers to a
mutation that is selected as a first mutation as a major mutation
(Shafer, 2002; Johnson et al., 2004). Similarly, a minor

mutation further increases resistance only in presence of other
mutations, or compensates for a possible fitness impact of other
mutations, and is therefore selected only in presence of these
other mutations. Although these concepts are not rigorously
defined, conditional independencies in the networks allow us to
identify major and minor mutations, in agreement with these
definitions.

2. Materials and methods

Data was derived from five clinical databases: Portugal,
Belgium, Israel, Brazil and an international database
containing sequences from subtypes other than subtype B.
In total we had access to 4911 sequences. Protease (PRO)
and partial reverse transcriptase (RT) HIV-1 sequences from
protease inhibitor (PI) naive patients and from patients
treated with only experience to NFV, IDV, or SQV as only PI,
either unboosted or boosted with ritonavir, were trimmed to
the first 350 amino-acids. At most one treated sequence and
one naive sequence per patient were included and identical
sequences were removed. RT inhibitor experienced patients
were included in the PI naive patient population, since
no resistance to RT inhibitors is expected in the protease
gene.

The analysis followed closely the method described in
Deforche et al. (2006). Subtyping was done using a
phylogenetic analysis (de Oliveira et al., 2005). We identified
wild type polymorphisms based on a prevalence greater than
10% in untreated patients and determined treatment
associated mutations by testing for independence from
treatment using a Cochran—Mantel-Haenszel x? test, stratify-
ing in each combination of subtype and database. The
statistical analysis was corrected for multiple comparisons
using Benjamini & Hochberg with a False Discovery Rate of
0.05. The data sets for Bayesian network were also stratified
for an equal ratio of treated and untreated sequences within
each combination of subtype and database, and included next
to treatment experience, Boolean variables indicating pre-
sence of each treatment associated mutation and presence of
polymorphic amino acids. Bayesian network learning was
done by searching using a simulated annealing heuristic for
the most probable network structure using a Bayesian scoring
metric. A non-parametric bootstrap was performed by
resampling from the sequences, to assess the robustness of
network features.

In the final networks, we do not show the obvious strong
antagonistic direct influences between different amino acids at
single residue. Only network features (presence or absence of
arcs) with a bootstrap higher than 65% were considered
robust, and only robust arcs are shown. To reduce the
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