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1. Introduction

Plasmids are extrachromosomal DNA molecules that

Plasmids are mosaic in composition with a maintenance “backbone” as well as “accessory”
genes obtained via horizontal gene transfer. This horizontal gene transfer complicates the
study of their genetic relationships. We describe a method for relating a large number of
Gram-negative (GN) bacterial plasmids based on their genetic sequences. Complete coding
gene sequences of 527 GN bacterial plasmids were obtained from NCBI. Initial classification
of their genetic relationships was accomplished using a computational approach analogous
to hybridization of “mixed-genome microarrays.” Because of this similarity, the phrase
“virtual hybridization” is used to describe this approach. Protein sequences generated from
the gene sequences were randomly chosen to serve as “probes” for the virtual arrays, and
virtual hybridization for each GN plasmid was achieved using BLASTp. Each resulting
intensity matrix was used to generate a distance matrix from which an initial tree was con-
structed. Relationships were refined for several clusters by identifying conserved proteins
within a cluster. Multiple-sequence alignment was applied to the concatenated conserved
proteins, and maximum likelihood was used to generate relationships from the results of
the alignment. While it is not possible to prove that the genetic relationships among the
527 GN bacterial plasmids obtained in this study are correct, replication of identical results
produced in a separate study for a small group of IncA/C plasmids provides evidence that
the approach used can correctly predict genetic relationships. In addition, results obtained
for clusters of Borrelia plasmids are consistent with the expected exclusivity for plasmids
from this genus. Finally, the 527-plasmid tree was used to study the distribution of four
common antibiotic resistance genes.

© 2012 Elsevier Inc. All rights reserved.

compatibility with different hosts and with other plasmids
within the same host cell (Couturier et al., 1988). Plasmids
are considered “mosaic” in composition containing both

are found in many species of bacteria and within taxa from
archaea, eukaryota, and bacteria (Bapteste et al., 2004).
Sequenced plasmids vary in size from less than 1 kbp
to more than 2500 kbp, and plasmids vary in their

Abbreviations: HGT, horizontal gene transfer; GN, Gram-negative;
MGM, mixed-genome microarray; CDS, coding gene sequence; ADD,
average absolute difference.
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backbone genes for maintenance and mobile and transmis-
sible genes that encode “accessory” traits (Christopher,
2000). Plasmid genes can be obtained from multiple
sources (Boyd et al., 1996) and disseminated by horizontal
gene transfer (HGT). HGT is responsible for the dissemina-
tion of many of the undesirable traits associated with bac-
teria, including antibiotic resistance and virulence. In
addition, broad-host-range plasmids play an important
role in bacterial adaptation to new environments. This
provides much of the motivation for understanding the
relationships among plasmids. Knowledge of these
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relationships will help us to better understand how genes
are shared horizontally across species boundaries as well
as to understand microbial evolution.

There are several ways to identify genes that have aris-
en from divergent sources, including comparison of GC fre-
quency, codon usage, and genomic signatures (Campbell
et al,, 1999; Karlin, 2001; Karlin and Burge, 1995; Suzuki
et al., 2008; van Passel et al., 2006). However, there is
some debate over whether plasmid mosaicism can be
understood from such features (Campbell et al., 1999;
van Passel et al., 2006). In addition, while molecular meth-
ods are frequently used to characterize plasmids (Smalla
et al., 2000), there is no sequence analogous to the 16S
rRNA sequence in bacteria with which to examine their
phylogenetic relationships. Several network-based repre-
sentations have been used to explore genetic relationships
among plasmids (Halary and Leigh, 2009; Popa et al.,
2011; Brilli et al., 2008). In particular, Brilli et al. (2008)
studied the evolutionary relationships of several Gram-
negative bacterial plasmids, including those hosted by
Escherichia, Salmonella, and Shigella, using the Blast2Net-
work method. Our work is the first to study the
genetic relationships of a broad and diverse group of
Gram-negative bacterial plasmids.

In this paper we introduce a method for investigating
the genetic relationships of 527 Gram-negative (GN) bacte-
rial plasmids using their complete gene sequences. Prior to
the availability of these sequences, methods such as the
one we describe in this paper were not possible, and it
was necessary to rely on other approaches - e.g., supertree
algorithms (a supertree is a single phylogenetic tree
assembled from a combination of smaller phylogenetic
trees based on different datasets (Gordon, 1986)) - to esti-
mate the genetic relationships of a large number of plas-
mids. The significant advantage of our approach is that it
exploits all the genetic information available in a system-
atic and comprehensive manner. We start with a modified
virtual mixed-genome microarray (MGM) method to cre-
ate an initial tree that describes overall genetic similarity
for these plasmids (Wan et al., 2007) using proteins rather
than DNA for both “probes” and “targets.” Because virtual
hybridization of MGMs is an entirely computational meth-
od, protein sequences can be used as readily as DNA se-
quences. We choose to use protein “probes” and
“targets” because doing so is more efficient computation-
ally (amino acid sequences are one-third as long as their
nucleotide counterparts) and because differences in silent
nucleotide mutations are absent in amino acid sequences.
To overcome representational bias due to gene repetition,
we use BLASTp on the concatenated amino acid sequences
of a plasmid with itself and remove duplicate proteins for
each plasmid. After removal of the duplicate proteins, pro-
tein sequences are randomly chosen to serve as ‘“probes”
for the virtual arrays, and virtual hybridization for each
GN plasmid is achieved using BLASTp. Each resulting inten-
sity matrix is used to generate a distance matrix from
which the initial tree is constructed. After completion of
the initial tree, conserved proteins within a cluster are
identified and used to refine the relationships within the
cluster by means of multiple sequence alignment of the
conserved proteins.

2. Materials and methods
2.1. Data preparation

In July 2010 the complete gene sequences for 2171 bac-
terial plasmids were available in the NCBI genome data-
base (http://www.ncbi.nlm.nih.gov/). Of these, 527
sequences were for Gram-negative (GN) bacterial plasmids
with more than 50 putative coding genes (CDS) (Supple-
mentary file 1). These were downloaded in FASTA format
and translated into amino acid sequences based on puta-
tive open reading frames. BLASTp with default parameters
was used to remove duplicate proteins within plasmid se-
quences by blasting the sequence with itself. Duplicate
proteins were not removed across plasmids because of
the need to reflect a representative distribution within
the entire protein population. A protein was considered
to be a duplicate for the similarity value as (length of
matching sequence)«(BLAST similarity score)/(length of
reference protein) >0.45 (Call et al., 2010). The resulting
set of proteins for all 527 GN plasmids after removal of
duplications — more than 97,000 in total — was used to ob-
tain “probes” that were randomly selected to create the
virtual arrays. Each array consisted of 20,000 proteins,
roughly 20% of the total protein population. The probe
selection procedure utilized independent sampling with-
out replacement.

2.2. Selection of number of arrays

Using 20% of the protein pool to construct an array cor-
responds, on average, to 20% representation of each plas-
mid on an array; this degree of representation is
sufficient for discrimination (Wan et al., 2007). Neverthe-
less, because probe selection is random, there is no guaran-
tee that plasmids will have equal representation, and
therefore sampling bias might be a concern. To overcome
potential bias, we can construct a number of virtual arrays
and generate the initial tree using a consensus method
based on all the array results. The problem then is to deter-
mine the number of arrays needed for the analysis. In
terms of accuracy of the relationship results, we assume
the more arrays that are used, the better. However, the
computational expense involved in using BLASTp or “vir-
tual hybridization” for each array makes it necessary to
determine an optimum number of arrays - i.e., a number
that minimizes the computational cost while minimizing
variance. In theory sampling bias can be removed simply
by using the entire set of proteins to construct one single
array - i.e., an array with more than 97,000 probes rather
than multiple arrays of 20,000 probes. However, the com-
putational expense both in terms of CPU time (estimated at
more than 16 days) and memory is impractical.

To determine the optimum number of arrays, we used
the average distance difference (ADD) (Fig. 1) as a function
of the number of arrays. After virtual hybridization of an
array for N different plasmids, an N x N distance matrix
is obtained. Pair-wise comparison of two distance matrices
results in an M = N(N—1)/2 distance vector. For the ADD
metric, we sum the absolute difference of the mean
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