

Available online at www.sciencedirect.com

PLASMID

Plasmid 55 (2006) 164-168

www.elsevier.com/locate/yplas

Short Communication

The recombination deficient *Enterococcus faecalis* UV202 strain is a recA mutant

Keith E. Weaver*, Shirisha G. Reddy

Division of Basic Biomedical Sciences, School of Medicine, University of South Dakota, Vermillion, SD 57069, USA

Received 17 August 2005, revised 11 October 2005 Available online 2 December 2005 Communicated by Ichizo Kobayashi

Abstract

The *recA* gene of the recombination deficient *Enterococcus faecalis* strain UV202 was sequenced and found to encode a glycine to aspartic acid mutation at amino acid 265. Both the UV sensitive and recombination deficient phenotypes of the UV202 strain were complemented by expression of the wild-type *recA* gene cloned under the control of the nisin-inducible promoter of an expression vector.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Recombination; DNA repair; recA; Amplification of plasmid-encoded antibiotic resistance genes

1. Introduction

The recombination deficient *Enterococcus faecalis* strain UV202 was isolated in 1980 (Yagi and Clewell, 1980b) and has been used ever since in enterococcal studies requiring limited recombination potential, such as complementation studies and studies requiring independent maintenance of multiple plasmids. The UV202 strain was also used to demonstrate the involvement of homologous recombination in the amplification of tetracycline resistance on the pAMα1 plasmid (Yagi and Clewell, 1980a). UV202 was isolated from the JH2-2 strain by chemical mutagenesis with *N*-methyl-*N'*-nitro-*N*-nitrosoguanidine and shown to have increased sensi-

tivity to UV light as well as recombination defects (Yagi and Clewell, 1980a,b). While it was assumed that UV202 was defective in some function of the recombination machinery, the precise mutation was never defined. The RecA protein is the central player in most recombination reactions and its gene is highly conserved in most bacterial cells, including E. faecalis (McGrew and Knight, 2003). To determine if the recombination defect in UV202 was due to a defect in RecA function, the recA gene was sequenced from both UV202 and JH2-2. The recA sequence from JH2-2 was found to be identical to the published sequence from strain V583 (Paulsen et al., 2003) while that from UV202 contained a single point mutation resulting in a glycine to aspartic acid substitution at amino acid 265. To determine whether this mutation was responsible for the recombination deficient phenotype, a promoter-less version of the JH2-2 recA gene was cloned

^{*} Corresponding author. Fax: +1 605 677 6381. E-mail address: kweaver@usd.edu (K.E. Weaver).

downstream of the nisin-inducible promoter of pMSP3535 and shown to complement the UV sensitive phenotype and support antibiotic gene amplification after nisin induction.

2. Procedures

Enterococcus faecalis strains used were UV202 (Yagi and Clewell, 1980b) and JH2-2 (Jacob and Hobbs, 1974) and were cultured routinely in Todd Hewitt Broth (THB, Sigma) medium at 37 °C. Escherichia coli DH5α competent cells were purchased from Invitrogen, (Carlsbad, CA) and grown in Luria–Broth (LB, Ausubel et al., 1998) at 37 °C. For preparation of solid media, agar (Sigma) was added at 1.8%. Cloning vectors used were pGEMT-Easy (Promega) and pMSP3535 (Bryan et al., 2000). Ampicillin (100 μg ml⁻¹) was used for selection of pGEMT-Easy in E. coli. For selection at 150 μg ml⁻¹ in E. coli and 10 μg ml⁻¹ in E. faecalis.

Plasmid DNA was purified from E. coli using the Bio-Rad Quantum Prep plasmid mini-prep kit and from E. faecalis using a previously described alkaline lysis procedure (Weaver and Clewell, 1988). E. faecalis genomic DNA was purified as previously described (Pospiech and Neumann, 1995). Restriction enzymes and T4 DNA ligase were purchased from New England BioLabs and used according to manufacturer's directions. Gel purification of restriction fragments was performed using the QIAEX II Gel Extraction Kit (Qiagen) according to manufacturer's instructions. Plasmid DNA was introduced into Subcloning Efficiency DH5α chemically competent cells (Invitrogen) according to manufacturer's instructions and into E. faecalis by electroporation as previously described (Cruz-Rodz and Gilmore, 1990). Sequencing was performed by Lone Star Labs (Houston, TX). PCR was performed using the PCR Supermix kit (invitrogen) according to the manufacturer's instructions. Primers used were: 5'-recA, 5'-GGCAGATGATCGTAAAGTG G-3'; 3' recA, 5'-CTATTCATCTAAGGGTAATT C-3'; recA-RBS, 5'-CGGGATCCAAGGAGGAT TATCCATTGGC-3'; 5'-rnc, 5'-GGTTACCATG GACAATCAGTTAACAAC-3'; 3'-rnc, 5'-CCATT CGGACCAACCACTGC-3'.

For RNA purification and UV exposure, *E. fae-calis* cultures were grown overnight in THB medium with the appropriate antibiotic, then diluted 1:10 in the morning in fresh medium and grown for 1 h at which point nisin (250 ng/ml) was added to induced

cultures. Incubation was then continued for another hour. For RNA purification, cells were harvested and RNA was purified using the FastRNA Pro Blue Kit (Qbiogene) according to the manufacturer's directions. RNA (0.2 µg) was then treated with DNA-free (Ambion) to remove residual DNA in the sample. Semi-quantitative PCR was performed using the Qiagen OneStep RT-PCR Kit according to the manufacturer's instructions including the no-RT control. Densitometry was performed on ethidium bromide stained gels using a Typhoon Imager, model 9410 and analyzed using ImageQuant software. For UV exposure cells were serially diluted and either 100 µl aliquots were spread or 10 µl aliquots were spotted onto THB agar plates. Plates were then exposed to various UV light levels in a Spectrolinker XL-1000 UV crosslinker (Spectronics).

3. Identification of a recA mutation in UV202, and cloning and expression of the wild-type gene

The recA genes of the JH2-2 and UV202 strains were amplified from genomic DNA by polymerase chain reaction (PCR) using the 5'-recA and 3'-recA primers. Products were cloned into pGEMT-Easy and sequenced using both M-13 forward and reverse primers to determine the complete sequence. The JH2-2 recA sequence was found to be identical to the published sequence for E. faecalis strain V583. The UV202 recA sequence contained a single nucleotide change at residue 797 from a G to an A which results in a glycine-to-aspartic acid change at amino acid 265 (numbered without including the initiating Met according to convention). This glycine is wellconserved in recA sequences from other organisms. The analogous amino acid in E. coli is G268 which is located between Y264, implicated in ATP contact, and the C-terminal domain beginning at residue 270, implicated in gating dsDNA (McGrew and Knight, 2003). Although to our knowledge no mutation has been previously isolated in this residue in either E. coli or Bacillus subtilis, it seemed likely that this mutation could lead to inactivation of the RecA protein product.

To test whether this mutation was responsible for the phenotype of UV202, the wild-type recA gene was amplified from JH2-2 using the recA-RBS primer and the 3'-recA primer. The recA-RBS primer is complementary to sequences further upstream of the recA gene than the 5'-recA primer and includes the putative ribosome binding site as well as a BamHI restriction site to be used for

Download English Version:

https://daneshyari.com/en/article/2824575

Download Persian Version:

https://daneshyari.com/article/2824575

Daneshyari.com