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High-throughput sequencing, large-scale data generation
projects, and web-based cloud computing are changing
how computational biology is performed, who performs
it, and what biological insights it can deliver. I review here
the latest developments in available data, methods, and
software, focusing on the modeling and analysis of the
gene regulatory interactions in cells. Three key findings
are: (i) although sophisticated computational resources
are increasingly available to bench biologists, tailored
ongoing education is necessary to avoid the erroneous
use of these resources. (ii) Current models of the regula-
tion of gene expression are far too simplistic and need
updating. (iii) Integrative computational analysis of large-
scale datasets is becoming a fundamental component of
molecular biology. I discuss current and near-term oppor-
tunities and challenges related to these three points.

Gene regulatory networks (GRNs)
The past few years have witnessed dramatic milestones in
high-throughput sequencing, large-scale data generation,
cloud computing, and computational biology. Supra-expo-
nential improvements in the throughput and cost of DNA
sequencing (http://www.genome.gov/sequencingcosts/) have
been accompanied by improvements in accuracy and reduc-
tions in the required sample size. These improvements have
in turn led to the widespread adoption of a broad range of
sequencing-based technologies (reviewed in [1]) to charac-
terize not only genomes but also the regulatory interactions
that allow genomes to specify cellular structure, function,
and behavior.

GRNs are defined as the set of interactions among genes
and their products (RNAs and proteins) that determine the
isoforms, location (cell type), timing, and rate of RNA
expression [2] (see Figure 1 for examples). With the possi-
ble exception of some metabolic and physiological process-
es, GRNs are the primary drivers of cellular behavior and
function.

Because GRNs are ultimately specified by the digital
code of DNA, they are uniquely accessible to both high-

throughput sequencing-based technologies and to compu-
tational modeling and analysis. At the same time, GRNs
are both complex (i.e., can exhibit hard-to-predict/nonline-
ar behaviors) and complicated (i.e., they are composed of
large numbers of component parts and interactions). For
this reason, mathematical and computational approaches
are essential in GRN research.

Cellular behaviors have traditionally been character-
ized as being mediated through highly distinct processes
(e.g., DNA replication) and pathways (e.g., the canonical
WNT signaling pathway). However, because of widespread
interactions among cellular processes and pathways, the
use of unbiased, genome-wide technologies is essential to
the discovery and characterization of GRNs.

In addition to the bedrock of ‘classical’ cis-regulatory
analysis, GRN modeling today is buttressed by four cor-
nerstones: (i) high-throughput technologies, (ii) integrative
analysis of complementary data types, (iii) leveraging
large-scale public datasets, (iv) computational modeling
and analysis. This article reviews recent developments and
discusses their implications for future research.

To maintain coherence and brevity, this review will
focus on developments in human GRN modeling and anal-
ysis. Diverse new GRN modeling opportunities are also
opening up in both well-studied and less-studied organ-
isms. These and the complex GRNs underlying interac-
tions between hosts and commensal or pathogenic
organisms are beyond the scope of the present review.

Types and uses of human GRN modeling
A model is any representation of a system that can facili-
tate its analysis, communication, or documentation [3].
Modeling is at the heart of GRN research at multiple
levels. At the most basic level, statistical models are at
the heart of all high-throughput data analysis. For exam-
ple, statistical models are commonly used to characterize
DNA fragment length distribution as a first step towards
the identification of transcription factor (TF) binding peaks
in ChIP-seq (chromatin immunoprecipitation followed by
high-throughput DNA sequencing) data.

Given filtered data, methods such as network inference
[4], guilt-by-association (e.g., through network or expres-
sion clustering; see Figures 2 and 3), and enrichment/over-
representation analysis (e.g., to identify the impacted
pathways or processes [5]) are used to organize genes
and their products into broad-brush conceptual models.
These models can then be refined and extended by inte-
grating multiple data types each highlighting a different
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89 Notch/CSL PROMOTE S Deltex1 Taghon et al 2005  Genes Dev; Franco  et al. 2006 PNAS;  Taghon  et  al 2007 Nat 
Immunol; many earlier  references

116 Notch/CS L PROMOTE S Ets2 Taghon  et al 2007 Nat  Immunol;  Franco  et  al  2006 PNAS

34 Notch/CSL PROMOTE S HES- 1 Taghon  et al 2005 Genes Dev; man y other re ferences

149 Notch/CS L PROMOTE S LEF-1 Taghon  et al 2007 Nat  Immunol

165 Notch/CS L PROMOTE S Notch1 Taghon  et al 2007 Na t Immu nol

166 Notch/CS L Notch3 Taghon  et al 2007 Na t Immuno l

0 Notch/C SL PRO MOT ES PTa
Reizis, B. & Leder   Genes D ev.  200 2 Feb 1;1 6(3) :295-3 00; F ranco et a l. 200 6 PN AS; 
Taghon et al 2007 Nat  Immunol

153 Notch/CS L PROMOTE S Runx1 Taghon et al 2007 Nat  Immunol;  Franco  et al 2006 PNAS;  cf.  also Nakag awa,
M.et al.: Chiba, Blood . 20 06 Nov  15;108(10 ):3329-3 4.

SourceId TargetId Source Sig n Target Evidence

32 171 Notch/CSL REPRESSES C/EBPa Weak early effect?  Stronger  indirect  effect?  (Franco  et al.  2006 shows  effect  on 
purified Thy-1+ cells; not seen  in  crude frac�on in  Taghon  et  al  2007)

265 100 DN2, DN3  Stage nega�ve
Regulator REPRESSES GATA-2 Tydell et  al.  2007 J.  Immunol.

264 163 DN3 Specific regulator PROMOTES Eva 1 Tydell et  al.  2007 J.  Immunol.

265 161
DN2, DN3  Stage nega�ve
Regulator REPRESSES c-Kit Taghon et al. 2006 Immunity;  Yui & Rothenberg 2004 J.  Immunol.

264 16 5 DN3  Specific  regulator PROMOTES Notch1 Taghon et al. 2006 Immunity

192 82 Notch-mod. GATA- 3 REPRESSES TCF-1 Taghon et al 2007 Nat  Immunol

32 117 Notch/CSL PROMOTES HEBAlt Wang, D.et al.:  Anderson, J Immunol.  2006 Jul  1;177(1):109 -19; Franco et al 2006 
PNAS. 

32 160 Notch/CS L PROMOTES CD25 Ta ghon et al 2005 ;  I. Maillardet al.: Pear, J Exp Med.  2006 Oct 2;203 (10 ):2239 -45. 
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Figure 1. Examples of gene regulatory network analysis, documentation, and visualization. (A) Part of BioTapestry visualization of a proposed early T cell specification gene

regulatory network (GRN) (adapted from: http://www.its.caltech.edu/�tcellgrn/Oldnetwork.html). Each gene (symbol with a bent arrow) is represented as having a

regulatory region (horizontal line) and a transcriptional output (arrow). A transcription factor (TF)–DNA binding interaction is depicted as an arrow incident on the regulatory

region of a gene. Protein–protein interactions are depicted by circles with incident and output arrows. The background color of each gene indicates the fold-change in

expression of the gene at a particular developmental stage. Snapshots of the network over four developmental stages are shown [double negative (DN) 1 to 4]. In the

interactive viewer, clicking on a gene brings up a table showing the experimental data supporting the indicated regulatory interactions. (B) Cytoscape visualization of

potential T cell specification gene regulatory interactions derived from ChIP-seq and gene expression data. Arrows represent regulatory interactions. Node colors and sizes

represent gene expression levels at early and late developmental stages. The inset shows a zoomed-in view of the lower portion of the network. Using Cytoscape utilities,

the user can quickly and easily identify a set of genes coregulated by Sfpi1 and Lyl1 (edge arrows highlighted in gold). This example network was derived during a 1.5 h

introductory laboratory session by novice computational biology students (see http://www.bu.edu/computationalimmunology/summer-school/ for details).
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