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Advanced platforms have recently become available for automatic and system-
atic quantification of plant growth and development. These new techniques can
efficiently produce multiple measurements of phenotypes over time, and intro-
duce time as an extra dimension to quantitative trait locus (QTL) studies.
Functional mapping utilizes a class of statistical models for identifying QTLs
associated with the growth characteristics of interest. A major benefit of func-
tional mapping is that it integrates information over multiple timepoints, and
therefore could increase the statistical power for QTL detection. We review the
current development of computationally efficient functional mapping methods
which provide invaluable tools for analyzing large-scale timecourse data that
are readily available in our post-genome era.

QTL Mapping and High-Throughput Phenotyping
In plant genetics, quantitative trait locus (QTL) mapping (see Glossary) is often used to
identify QTLs or causal genes associated with phenotypes of interest [1]. QTL mapping is a
crucial step in marker-assisted selection (MAS), which has been successfully applied in
many plant breeding programs [2]. Recent advances in next-generation sequencing (NGS)
techniques have provided fast and inexpensive access to genomic information on a large
scale, which allows the execution of the QTL and/or association mapping based on genome-
wide marker data [3,4] (genome-wide association mapping). In addition to the genotypic
information, QTL mapping also requires high-quality phenotype data. Intuitively, increasing the
sample size in a QTL analysis can improve the power to correctly identify QTLs. From another
perspective, it is also beneficial to perform sample collection of plants under similar or
exchangeable microenvironmental conditions to ensure that environmental variance and noise
are minimized. However, traditional plant phenotyping approaches largely utilize manual
laboratory experiments and visual scoring by experts, and these practices are often time-
consuming and it is difficult to arrange desirable growth conditions for individual phenotypes or
repeats. Consequently, the development of high-throughput and/or automated phenotype
platforms [5–11], involving both automated recording and screening of phenotypes by various
imaging techniques, and effectively allocating and monitoring environmental conditions, has
started to gain more and more attention. This advance greatly eases the measurement of
timecourse phenotype data and will provide new insight into genetic studies of plant growth.
Accordingly, this review describes functional mapping – a class of statistical methods
designed to efficiently integrate temporal information and identify QTLs associated with
phenotypic dynamics. Computational efficiency is an important consideration in some recently
developed approaches to meet the new challenge from high-dimensional genotype and
phenotype data. The review also discusses the limitations of the current methods and high-
lights future research directions.

Trends
High-throughput imaging techniques
are capable of measuring time-series
of plant phenotypes, which may poten-
tially facilitate the QTL analysis of devel-
opmental and growth related traits.

A major benefit of functional mapping is
that it integrates information over multi-
ple timepoints, and therefore could
increase the statistical power for QTL
detection.

To handle high-dimensional genotyp-
ing and phenotyping data, computa-
tional efficiency is the focus of the
novel statistical methods for dynamic
QTL analysis.
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High-Throughput Phenotyping
A high-throughput phenotyping platform (HTPP) may either be set up in controlled environ-
ments, such as growth chambers and greenhouses, or in the field. Imaging techniques [12,13]
are core facilities of a HTPP and are utilized to record phenotypes as pictures or videos, including
for example visible and/or digital imaging for traits such as height, shoot biomass, yield traits,
root architecture and morphology, fluorescence imaging for traits such as photosynthetic status,
and 3D imaging for traits such as root structure. These 2D and/or 3D images obtained by HTPPs
may be stored on a high-performance computing infrastructure and be read and processed by
mathematical and computational image-analysis tools to extract various traits. Therefore,
HTPPs do not only rely on advanced imaging and remote sensing techniques but also require
high-performance computational tools for processing and managing image data [8].

HTPPs have been successfully developed in some controlled environments (e.g., Australian
Plant Phenomics Facility, www.plantphenomics.org.au), where microenvironmental conditions
such as light and water are automatically adjusted, and the positions of plants can also be
relocated to minimize the environmental heterogeneity between individuals and repeats. Such
environmental homogeneity may also be achieved by efficient use of experimental design and
analysis within the HTPP framework (e.g., choosing suitable block size and/or using appropriate
statistical models for the analysis) with less cost than relocating the plants [14]. However, it has
been reported that the QTLs identified in controlled environments may not contribute to crop
improvement in the field [6]. By contrast, many HTPPs which have been directly developed in the
field cannot adequately monitor environmental factors, such as the temporal effects of climate
and atmospheric variation, or the spatial effect caused by soil variation [8]. The use of these
platforms in the field will require improvements to permit better monitoring of environmental
factors, and application of an appropriate experimental design would also be useful to maintain a
sufficient degree of environmental homogeneity within a field. Another issue with HTPPs is that
they are currently only available for a limited number of plant species, and more generic
phenotyping platforms that are applicable for multiple species will be needed in the future.

High-Throughput Phenotyping Facilitates the Measurement of Developmental Traits
Studying the developmental process (e.g., growth) of the traits is often interesting. Analyzing
developmental behavior of a trait is only possible if there are repeated measurements of
individual phenotypes over time. Monitoring trait development by traditional phenotyping
approaches is far from simple work. For example, obtaining repeated measurements of some
traits such as root architecture is not possible using conventional methods because these
methods would necessitate destroying the plants. By contrast, some HTPPs, relying on various
imaging techniques, are able to more conveniently monitor the dynamic growth of the traits
without damaging the plant [15–20]. Therefore, HTPPs can efficiently bring time as an extra
dimension to the phenotype data, which may potentially facilitate QTL analysis of developmental
and growth-related traits. To efficiently utilize timecourse data generated by HTPPs, advanced
statistical methods are needed [18,19]. Ideally such methods should integrate the phenotypic
information over multiple timepoints, map the dynamic phenotype–genotype relationship, and
account for possible random errors introduced by temporal and/or spatial environmental factors.

Functional QTL Mapping
Analysis of quantitative trait loci involves modeling, estimation, and hypothesis testing. Statistical
approaches for analyzing a quantitative trait and/or multiple correlated traits at a single timepoint
(Box 1) have been well established [21–23]. When phenotype records at multiple timepoints are
available, one may analyze each single timepoint separately and identify QTLs associated with
phenotypes at that particular timepoint. This approach ignores the dependency between
repeated phenotypic measurements. For example, one may expect that the two phenotypic
measurements at neighboring timepoints should have closer values than the two at a greater

Glossary
False discovery rate (FDR): in
multiple hypothesis testing, FDR is
the expected portion of falsely
rejected null hypotheses among the
rejected hypotheses.
Family-wise error rate (FWER): the
probability of having one incorrectly
rejected null hypothesis among all the
hypotheses.
Genome-wide association (GWA)
mapping: identifies SNPs that are
significantly associated with a
quantitative trait among a genome-
scale SNP set based on population
data. Because a high-density SNP
panel is applied, the detected
significant markers should be in high
linkage disequilibrium with QTLs, and
can be used to proxy the QTL
positions.
Marker-assisted selection (MAS):
a molecular strategy to indirectly
improve economically relevant traits
during their early development
stages, based on selection targeted
on a trait-associated set of markers.
Multiple-split test: a hypothesis-
testing method for variable selection.
The data are repeatedly and
randomly divided into two parts, the
first part is used to perform variable
selection and the second is used to
construct a test statistic. The P value
of each SNP is averaged over
multiple replicates to reduce the
uncertainty. This method can be
used to control FWER.
Next-generation sequencing
(NGS): utilizes efficient parallel
sequencing and imaging techniques
to simultaneously produce thousands
to millions of reads with low cost.
Advances in NGS facilitate the
genotyping of high-density SNP
panels to be used later in genetic
studies.
Permutation test: hundreds of
datasets are generated by randomly
shuffling phenotypes into a different
order and destroying phenotype–
genotype relationships. Each shuffled
dataset is analyzed to construct an
empirical distribution of SNP test
statistics (i.e., null distribution). The
observed SNP test statistic is then
tested against this distribution.
Quantitative trait locus (QTL): a
segment of a DNA sequence which
contributes to the variation of a
quantitative trait by containing or
being linked to the genes determining
that trait.

Trends in Plant Science, December 2015, Vol. 20, No. 12 823

http://www.plantphenomics.org.au/


Download English Version:

https://daneshyari.com/en/article/2825774

Download Persian Version:

https://daneshyari.com/article/2825774

Daneshyari.com

https://daneshyari.com/en/article/2825774
https://daneshyari.com/article/2825774
https://daneshyari.com

