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Association analysis is used to measure relations be-
tween markers and quantitative trait loci (QTL). Their
estimation ignores genes with small effects that trigger
underpinning quantitative traits. By contrast, genome-
wide selection estimates marker effects across the
whole genome on the target population based on a
prediction model developed in the training population
(TP). Whole-genome prediction models estimate all
marker effects in all loci and capture small QTL effects.
Here, we review several genomic selection (GS) models
with respect to both the prediction accuracy and genetic
gain from selection. Phenotypic selection or marker-
assisted breeding protocols can be replaced by selection,
based on whole-genome predictions in which phenotyp-
ing updates the model to build up the prediction
accuracy.

Genomic selection will revolutionize the applications of
plant and tree breeding
Marker-assisted selection (MAS; see Glossary) has been
used in plant improvement programs since the 1990s, after
promising research results for tagging genes or mapping
QTL. MAS and association genetics have been used in the
detection of underlying major genes in gene pools and in
their introgression to improve traits of major crop breeding
programs. Nevertheless, they have shown some shortcom-
ings due to long selection cycles and the search for signifi-
cant marker–QTL associations being unable to capture
‘minor’ gene effects [1–3].

The introduction of GS [4] has paved the way to over-
come these limitations using whole-genome prediction
models. The use of high-density markers is one of the
fundamental features of GS. Therefore, every trait locus
has the probability of being in linkage disequilibrium (LD)
with a minimum of one marker locus in the entire target
population. Genome-wide selection removes the need to
search for significant QTL–marker loci associations indi-
vidually. Rather, GS accounts for bunches of predictors
simultaneously and is characterized by constraining ran-
dom estimates towards zero. Moreover, GS can accelerate
breeding cycles in such a way that the rate of annual
genetic gain per unit of time and cost can be enhanced [5].

Review

Glossary

Best linear unbiased prediction (BLUP): a statistical approach used to estimate

the breeding values of different traits.

Breeding population (BP): the descendants of a TP or introduced variety

but related to the TP, in which they are only genotyped but not phenotyped.

Breeding value: the average effects of alleles in the entire loci that are

anticipated to be transferred from the parent to the progeny. The breeding

value measures how many of the superior alleles or genes are transferred to

the progeny.

Cross-validation: a method used to train and develop the prediction model(s)

using different sampling techniques in the TP data sets ahead of estimating the

GEBVs in the BP. The greater the similarity of the correlation of the two subsets

(training set and validation set) to the correlation of the true breeding values in

the TP to the expected GEBVs in the BP, the higher the precision and reliability

of the prediction model(s).

Double haploids (DH): synthesis of genotypes after the haploid cells have

undergone artificial chromosome doubling.

Genetic distance: measurement of relatedness or dissimilarity between

samples or populations. The larger the value of genetic distances between

samples, the more divergent the samples.

Genetic value: a cumulative effect of genes in the entire loci that affects the

performance of the trait. It includes the additive effect and the dominance

effect of an allele. In the absence of dominance, genetic value is equal to

breeding value.

Genotype • environment (G • E) interaction: estimates (ranks) the differential

reaction of the genotype in terms of stability and performance across seasonal

and environmental conditions.

Genomic estimation of breeding value (GEBV): the estimation of genotyped

populations using statistical model(s) to further predict the breeding values of

future phenotypes in the target species.

Genomic selection (GS): estimates marker effects across the whole genome

of the target population based on two distinct but related groups, the so-

called training and breeding populations. The selection decision will be

made on the breeding population depending on the outcomes of breeding

values.

Heritability: the degree of genetic variance that affects a phenotypic trait.

High-throughput phenotyping: recording of agro-morphological and physio-

logical traits using image and computer algorithms.

Imputation: computation of missed genotypic data using various statistical

methods.

Inbreeding depression: loss of hybrid vigor resulting from the expression of

deleterious recessive alleles. This phenomenon affects severely outbreeding

species.

Linkage disequilibrium (LD): the nonrandom association of alleles at different

loci in a population.

Marker-assisted selection (MAS): a type of indirect selection based on a

significant association between a marker and variation for target trait.

Population structure: the formation and distribution of gene pools in a defined

population. Analysis of genetic variation among and within a population is the

key to determining the extent and degree of variation in the population

structure.

Quantitative trait loci (QTL): DNA segments carrying genes controlling

quantitative traits.

Rare alleles: alleles with a frequency below or equal to 1% of the population.

These can be deleterious or favorable alleles.

Sequencing: the determination of sequential arrangement of nucleotides along

the DNA or RNA of any species.

Single nucleotide polymorphism (SNP): DNA sequence variation arising from

pairwise differences in nucleotide(s) of the genome between individuals of

same species.

Training population (TP): a group of individuals from a population (such as

half-sibs or lines) that are both phenotyped and genotyped.
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GS has long been practiced in the field of animal breeding,
but is in its infancy in crop [1,6,7] and forest tree [8,9]
breeding. Genome-wide selection or GS estimates marker
effects across the whole genome of the breeding population
(BP) based on the prediction model developed in the TP
(Figure 1). TP is a group of related individuals (such as half-
sibs or lines) that are both phenotyped and genotyped. BP
usually includes the descendants of a TP or a new variety
that is related to the TP, and is only genotyped not pheno-
typed. Hence, GS relies on the degree of genetic similarity
between TP and BP in the LD between marker and trait loci.

GS identifies the highest genomic estimated breeding
values (GEBVs) instead of novel gene(s) in the target spe-
cies. Given that many of the selections are replaced by
selection on predictions, phenotyping can be considered as
a key informant in GS to build up the accuracy of statistical
models. MAS [10], marker-assisted recurrent selection
(MARS) [11], and gene pyramiding [12] are still important
methods of selection to identify and further incorporate
novel gene(s) in recurrent parents. These methods can be
complemented with GS in integrated plant breeding pro-
grams (Figure 1). Therefore, with the advent of cutting-edge
next-generation sequencing (NGS) and high-throughput
phenotyping tools, GS may revolutionize practical applica-
tions of crop and forest tree improvement programs.

In this review, we discuss estimating GEBV, the accu-
racy and gain of selection using genome-wide prediction
models, compare GS versus other selection methods of
plant breeding, and provide an outlook of GS in plant
breeding schemes.

Prediction models
Plant breeding is a science of prediction. Various types of
prediction model respond differently because they vary in
their assumption(s) when treating the variance of complex
traits. The standard linear model equation can be formu-
lated as (Equation 1):

y ¼ m þ
X

k
xkbk þ e; [1]

where y is a vector of trait phenotype, m is an overall
phenotype mean, k represents the locus, xk is the allelic
state at the locus k, bk is marker effect at the locus k, and
e � Nð0; s2

e Þ where e is the vector of random residual effects
and s2

e is the residual variance. In xk, the allelic state of
individuals can be coded as a matrix of 1, 0, or �1 to a
diploid genotype value of AA, AB, or BB, respectively.

The number of predictors ( p) is usually far greater than
the number of individuals (n). In such cases, estimates of
ordinary least-squares (OLS) have a poor predictive ability
because marker effects are treated as fixed effects, which
leads to multicolinearity and overfitting among predictors,
thereby making the model infeasible. The advent of GS [4]
provides an opportunity to confront these challenges using
alternative models, such as whole-genome regressions
(Table 1, Figure 2). Parametric and nonparametric models
can cluster whole-genome regression methods.

Accuracy assessments of genomic selection in crop and
tree breeding
The performance of GS depends on the prediction accuracy
to select individuals whose phenotype is unknown. In GS,

the GEBV can be computed from Equation 1 as (Equation
2):

GEBV ¼ xnewb̂k; [2]

where xnew is a matrix comprising the allelic states of
individuals in a BP, and b̂k is the estimate of the regression
coefficient of bk.

Cross-validation is used to train and develop the
prediction model in the TP (Figure 3A). Then, the best-
fitted model can be used to further evaluate the GEBV in
a BP (Figure 3B). Therefore, the prediction of GEBVs
should mimic the alternatives of cross-validation
strategies [13].

Prediction accuracy (rA) is the Pearson’s correlation (r)
between the selection criterion (GEBV) and the true breed-
ing value (TBV) (Figure 3B). The expected prediction
accuracy (rA) can be computed as in [14] (Equation 3):

rA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

h2 þ Me
N p

;

vuut [3]

where h2 is the narrow sense heritability, Np is the number
of individuals in a TP, and Me is the number of independent
chromosome segments, which depends on both the effec-
tive population size (Ne) and the genome length in Morgan
(L) that was derived in [15] as Me � 2NeL. Ideally, Me is
related to the effective number of QTL. The combined use
of both Np and h2, rather than their individual assessment,
is key to regulating the expected prediction accuracy
[14,16]. This is more pronounced when dealing with low
trait heritability, where increasing the number of individ-
uals in the TP may maintain the reduction in the expected
prediction accuracy. In this situation, a higher Np than Me

leads to a reduction in the value of Me
N p

, thereby increasing
prediction accuracy.

Factors affecting the prediction accuracy of GS models
The response of GS is the output of various factors affecting
the accuracy of GEBVs. These factors are interrelated in a
complex and comprehensive manner. They include model
performances, sample size and relatedness, marker densi-
ty, gene effects, heritability and genetic architecture, and
the extent and distribution of LD between markers and
QTL.

Model performances

Accuracy varies among GS models according to their
assumptions and treatments of marker effects (Table 1).
For example, it has been established that both Bayesian
least absolute shrinkage and selector operator [Bayesian
LASSO (BL)] and ridge regression (RR) models outperform
support vector regression for predicting GEBVs for host
plant resistance to wheat rusts [17], because these traits
are controlled by additive gene effects. Another study
compared 11 GS models on wheat (Triticum aestivum),
maize (Zea mays), and barley (Hordeum vulgare) and all
models, except the support vector machine, recorded simi-
lar average prediction accuracies using cross-validation
[18]. In this study, cluster analysis of the GS models using
Euclidean distance led to separate groupings of nonpara-
metric versus parametric regressions.
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