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a b s t r a c t

Helical reconstruction represents a convenient and powerful approach for structure determination of
macromolecules that assemble into helical arrays. In the case of membrane proteins, formation of tubular
crystals with helical symmetry represents an attractive alternative, especially when their small size pre-
cludes the use of single-particle analysis. An essential first step for helical reconstruction is to character-
ize the helical symmetry. This process is often daunting, due to the complexity of helical diffraction and
to the low signal-to-noise ratio in images of individual assemblies. Furthermore, the large diameters of
the tubular crystals produced by membrane proteins exacerbates the innate ambiguities that, if not
resolved, will produce incorrect structures. In this report, we describe a set of tools that can be used to
eliminate ambiguities and to validate the choice of symmetry. The first approach increases the signal-
to-noise ratio along layer lines by incoherently summing data from multiple helical assemblies, thus pro-
ducing several candidate indexing schemes. The second approach compares the layer lines from images
with those from synthetic models built with the various candidate schemes. The third approach uses unit
cell dimensions measured from collapsed tubes to distinguish between these candidate schemes. These
approaches are illustrated with tubular crystals from a boron transporter from yeast, Bor1p, and a b-
barrel channel from the outer membrane of E. coli, OmpF.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

The analysis of helical diffraction from biological assemblies
dates back to the original studies of DNA (Franklin and Gosling,
1953; Watson and Crick, 1953; Wilkins et al., 1953) and the folding
of polypeptides into an a-helix (Pauling et al., 1951; Perutz, 1951).
Those structures were solved by building models based on inten-
sity profiles from X-ray fiber diffraction patterns, and this analysis
not only laid the mathematical foundation for helical diffraction
theory (Cochran et al., 1952) but also gave rise to Fourier-Bessel
reconstruction methods for 3D reconstruction from electron
micrographs (DeRosier and Klug, 1968). Since then, electron micro-
scopy (EM) has been a major tool in studying the structural prop-
erties of helical assemblies that either appear naturally in a
biological context, or are reconstituted in vitro (Egelman, 2015).

There are many examples of naturally occurring helical assem-
blies, such as actin (Galkin et al., 2015), myosin filaments
(Woodhead et al., 2005), microtubules (Li et al., 2002), amyloid fib-
rils (Schmidt et al., 2015), bacterial flagella (Trachtenberg and

DeRosier, 1992), tobacco mosaic virus (Jeng et al., 1989), and fila-
mentous bacteriophages (Wang et al., 2006). Helical assemblies
formed by reconstitution of purified proteins include the capsid
protein of polyoma virus (Baker et al., 1983), dynamin (Low
et al., 2009; Zhang and Hinshaw, 2001), BAR proteins interacting
with lipid bilayers (Frost et al., 2008) and integral membrane pro-
teins embedded within such bilayers (Coudray et al., 2013;
Toyoshima and Unwin, 1990; Zhang et al., 1998). In the case of
membrane proteins, the helical symmetry offers a practical advan-
tage over the alternative planar morphology of conventional 2D
crystals formed, for example, by bacteriorhodopsin (Henderson
and Unwin, 1975) and light-harvesting complex II (Wang and
Kühlbrandt, 1991). In particular, molecules within helical assem-
blies adopt a complete range of orientations, thus overcoming a
major technical hurdle in the analysis of planar crystals by elimi-
nating the need to collect images of tilted specimens. Furthermore,
the helical assembly overcomes size limitations of single-particle
analysis, which is currently impractical for many membrane pro-
teins due to their small size.

Various reconstitution techniques have been used to produce
helical assemblies of membrane proteins. For example, helical
arrays of Ca2+-ATPase (Young et al., 1997) and the ABC transporter
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MsbA (Ward et al., 2009) were produced by using BioBeads to
rapidly remove detergent, helical arrays of the polytopic mitochon-
drial outer membrane protein TspO were grown more slowly in
Slide-A-Lyzer dialysis cassettes (Pierce) (Korkhov et al., 2010a),
and the membrane domain of human erythrocyte band 3 was crys-
tallized in dialysis buttons (Yamaguchi et al., 2010). In recent years,
our laboratory has developed a pipeline for automating crystalliza-
tion screens using 96-well microdialysis plates, which yielded heli-
cal crystals for a large number of different membrane protein
targets (Lasala et al., 2015).

Although there are different approaches for 3D reconstruction
of helical assemblies, they all rely on an initial assignment of the
helical symmetry, which is often a difficult process (Egelman,
2014). The conventional parameters used to describe a simple,
one-start helix are its rise and the number of subunits per turn
(Diaz et al., 2010). However, membrane proteins typically adopt
more complex helical assemblies making it more convenient to
define an indexing scheme that is comparable to indexing diffrac-
tion patterns from 2D and 3D crystals (Toyoshima, 2000). In the
case of planar 2D crystals, assignment of indices to diffraction
spots is relatively straight-forward and leads directly to an esti-
mate of the size and shape of the unit cell. In contrast, the cylindri-
cal geometry adopted by helical assemblies makes it difficult to
establish the number of unit cells that are wrapped around the
cylinder (Fig. 1) and thus the parameters that govern the helix

(Egelman, 2014). Moreover, the diameter of helical assemblies pro-
duced by reconstituted membrane proteins is often variable, thus
generating a number of different helical symmetries within a given
sample, all of which are derived from the same underlying lattice.
In such cases, it is necessary to segregate the helical crystals into
classes according to their distinct symmetries. The determination
of helical symmetry is facilitated by graphical software tools like
Windex (Ward et al., 2003), EMIP (Diaz et al., 2010) and SPRING
(Desfosses et al., 2014). However, given ambiguities in this process,
it is important to define a set of approaches that can be used not
only to establish, but also to validate the indexing scheme, which,
if not correct, leads to incorrect structures and inappropriate inter-
pretations of molecular function.

In this report, we start by reviewing the conventional approach
to indexing, which relies on the position and phase of the layer
lines composing the diffraction pattern. Because this approach
leads to ambiguity for the relatively wide tubes formed by mem-
brane proteins, we go on to describe alternative approaches
designed to identify and validate the correct scheme. These alter-
natives include summing diffraction patterns from multiple tubes,
analyzing the 2D lattice of collapsed tubes, comparing diffraction
patterns from experimental images with those from synthetic
images, and comparing density maps from tubes with related heli-
cal symmetries. We illustrate the utility of these approaches by
analyzing images of two different membrane proteins: the boron
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Fig. 1. Relationship between a planar, 2D lattice and a helical assembly. (A) The surface of a helical assembly is composed of a planar lattice, which is characterized by unit
cell axes a (blue) and b (green) and the intervening angle c. The horizontal axis corresponds to the circumference of a cylinder, which can be measured either with azimuthal
coordinates (/ = 0–360�) or a linear dimension (0–2pr, r is the radius) and is depicted as a vector extending from one point in the lattice to another. These two points coincide
when the assembly is rolled into a cylinder. The vertical axis corresponds to the longitudinal axis of the cylinder, which has a linear dimension. (B) The same lattice as in A, but
rolled up into a cylinder. The solid blue and green lines correspond to those in A and follow a helical path around the surface of the cylinder. Each of these lines belongs to a
helical family, which are drawn as parallel, dotted lines in A. The start numbers for each family correspond to the number of parallel lines that cross the circumferential
vector, which in this case are 10 for the green helices and 9 for the blue helices. The Bessel orders for these helical families are therefore �9 and 10, with the sign reflecting the
handedness of the helices. (C) Mock diffraction pattern from the planar lattice in A showing the principal (1,0) and (0,1) reflections. This pattern of reflections is consistent
with Bragg’s law that describes how the lattice lines drawn in A generates this diffraction pattern. (D) Mock diffraction pattern from the helical lattice in B. Each discrete
reflection in C generates a Bessel function, depicted as a series of three amplitude peaks drawn in black. In addition, the helix generates mirror symmetry about the
meridional axis (Z), resulting from the superposition of near and far sides of the assembly. This mirror symmetry gives rise to the amplitude peaks drawn in grey. Together,
the black and grey amplitudes constitute a layer line. The rise dz and the azimuthal angle d/ are shown in panel A, which characterize a one-start helix running through all of
the points in the lattice. This one-start helix has a pitch, indicated on the right in panel A, and the distance between the corresponding layer line (with a Bessel order of one)
and the equator will equal the reciprocal of this pitch. Such a one-start helix is sometimes referred to as a ‘‘genetic helix” and is useful for iterative real-space helical
reconstruction methods.
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