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a b s t r a c t

In the study of protein dynamics relevant to functions, normal mode analysis based on elastic network
models (ENMs) has become popular. These models are usually validated by comparing the calculated
atomic fluctuation for a single protein in a vacuum to experimental temperature factors in the crystal
packing state. Without reflecting the crystal packing effect, in addition, their arbitrary assignment of
spring constants leads to inaccurate simulation results, yielding a low correlation of the B-factor. To over-
come this limitation, we propose a robust elastic network model (RENM) that not only considers the crys-
talline effect by using symmetric constraint information but also uses lumped masses and specific spring
constants based on the type of amino acids and chemical interactions, respectively. Simulation results
with more than 500 protein structures verify qualitatively and quantitatively that one can obtain the bet-
ter correlation of the B-factor by RENM without additional computational burden. Moreover, an optimal
spring constant in physical units (dyne/cm) is quantitatively determined as a function of the temperature
at 100 and 290 K, which enables us to predict the atomic fluctuations and vibrational density of states
(VDOS) without a fitting process. The additional investigation of 80 high-resolution crystal structures
with anisotropic displacement parameters (ADPs) indicates that RENM could give a full description of
vibrational characteristics of individual residues in proteins.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Proteins undergo conformational changes, which are closely
related to specific biological functions, including catalysis, reg-
ulation, transport, ligand binding, and allosteric regulation
(Henzler-Wildman and Kern, 2007). However, it is a great chal-
lenge for experimental studies to resolve the protein dynamics,
owing to the difficulty in direct observation (Kondrashov et al.,
2006). Simulation methods, typically molecular dynamics (MD)
simulation, can alternatively explore the fine details of protein
dynamics, but the computational cost of these all-atom force
field-based calculations is very expensive, which limits the

timescale (nanoseconds to microseconds) and data size despite
advanced computing technology, including supercomputers. In
order to reduce such computational burden, various coarse-
grained (CG) methods have been proposed by using the simplified
potential and structure. One of the simple but robust CG methods
is the elastic network model (ENM). In this model, a target protein
is represented as a system composing identical masses, typically a
Ca representation, connected by a harmonic linear spring with a
uniform (Atilgan et al., 2001; Tama and Sanejouand, 2001; Tirion,
1996) or distance-dependent force constant (Hinsen et al., 2000;
Yang et al., 2009). Such dramatic simplification leads to efficient
calculation of the CG normal mode without the energy equilibrium.
Moreover, the collective motions of a protein, which are often cor-
related to its intrinsic biological functions, are observed from a few
of the lowest frequency normal modes. They are not sensitive to
the CG level but only sensitive to their topological features
(Tirion, 1996). Several numerical studies have shown that ENM
efficiently captures the functionally relevant protein dynamics
nearly without limitation in both size and timescale (Bahar and
Rader, 2005; Tama and Brooks, 2006).
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With a great interest in the application of ENM to protein con-
formational change, it is a natural issue to improve the validity of
ENMs. Experimental B-factors, which physically represent the
atomic fluctuations, have normally been used to validate the
ENMs by comparing with fluctuation values calculated from the
normal mode (NM). It is expected that a more accurate ENM can
reproduce better B-factors. Both the anisotropic network model
(ANM) and its isotropic variant, the Gaussian network model
(GNM), have yielded reasonable results: namely, the average
correlation coefficient (CC) for 113 proteins is 0.55 (Eyal et al.,
2006) and 0.59 (Yang et al., 2005), respectively.

After that, more elaborate ENMs, usually considering the
experimental crystallization environment, such as the crystal
packing state (Hafner and Zheng, 2010; Kundu et al., 2002;
Riccardi et al., 2009; Soheilifard et al., 2008; Song and Jernigan,
2007; Zheng, 2010), have been proposed to improve the accuracy
of B-factor prediction. The computed atomic fluctuations from
NM are targeted to an isolated protein, whereas the experimental
B-factors are determined under the crystalline state. This discrep-
ancy would cause inaccurate simulation results. Indeed, an early
study by Yang et al. (2007) has underlined the effect of crystal
contact, showing the better correlation (0.75) between GNM
and NMR data under the soluble state compared to that (0.49)
between GNM and B-factors measured by X-ray crystallography.
Therefore, to accurately describe protein dynamics in the crys-
talline state, it is important to properly consider the crystal pack-
ing effect. To this end, by taking into account the crystal packing
effect, Kundu et al. (2002) have improved the average CC of GNM
from 0.59 to 0.66. They also found that the GNM model achieved
better correlation with experiments than a simplified translation–
liberation–screw (TLS) model without any fitting parameter
(Schomaker and Trueblood, 1968; Soheilifard et al., 2008). The
TLS model, which regards a protein as an assembly of rigid sub-
units, emphasizes the rigid body motion as the significant con-
tribution for the crystalline B-factor. It usually fits the B-factors
by optimizing the translation, rotation, and screwing motions.
Although several studies considering the rigid body motion as
another crystallization environment have improved the B-factor
correlation (Soheilifard et al., 2008; Song and Jernigan, 2007),
its extent of contribution to the B-factor is under debate
(Meinhold and Smith, 2005; Song and Jernigan, 2007; Zheng,
2010). As the criterion used for optimizing the model is not
always the same for every protein and the possibility of overfit-
ting with many parameters still exists, the induced models may
not have a physical basis. Moreover, the arbitrary contributions
of parameters from the fitting process could benefit the under-
standing of the dynamics of specific target proteins, but this
makes it difficult to anticipate the experimental B-factors. There
is no doubt that, as the number of fitting parameters increases,
much higher CC values are naturally expected, but the prediction
of a high variance of parameters becomes much harder.

This paper presents a new systematic extension of ENM by not
only reflecting the crystal packing effect but also incorporating the
chemical and inertia information into the coarse-grained model.
Unlike the previous methods to consider the crystal packing effect,
we have adopted a more efficient strategy, which focuses on a sin-
gle protein molecule as our main structure model while the pack-
ing effect of surrounding protein structures is mathematically
applied by symmetric constraints. This moderate model could keep
the computational cost at the level of a single protein structure by
efficiently reflecting the crystal effect without limit. Moreover,
consideration of the real chemical and physical properties, such
as chemical interactions and residue inertia, not completely but
somewhat improves the average CC values without further com-
putational burden. The assignment of the chemical information
according to the types of chemical bonds also leads to the reliable

vibrational density of states (VDOS) distribution, showing the
bimodal state with low and high frequency spectrum ranges,
which is in good agreement with that using the all-atom
CHARMM force-field model. Unlike the previous B-factor fitting
methods, the proposed model only needs a single parameter, such
as the spring constant; thus, it can be empirically determined
based on the experimental B-factor. Finally, the universal stiffness
value obtained in this study not only achieved the reliable atomic
fluctuation in terms of low root mean square deviation (RMSD)
value with experimental B-factors but also described the accurate
peaks in low vibrational frequency ranges, which are very impor-
tant fingerprints in the dynamics of individual proteins but labor-
ious to indicate with existing experimental methods (Balog et al.,
2004; He et al., 2011).

2. Materials and methods

As the details of ENM have already been presented elsewhere
(Kim et al., 2002), here is given only a brief description. ENM for
protein dynamics is based on the underlying assumption that the
total potential energy, V, of a given protein is expressed as the
sum of harmonic interactions such that:

V ¼ 1
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ENM, the representative atoms are usually Ca atoms. In the
pioneering study (Tirion, 1996), this quadratic potential was be suf-
ficient to describe low-frequency collective motions of proteins.

In this study, we propose a more robust ENM, called RENM,
with the following two strategies. First, we define the force con-
stants assigning the various stiffness values based on the types of
chemical interactions. Moreover, the total mass of each residue is
also assumed to be a lumped mass on the Ca atom. This mass
weighted chemical ENM, called MWCENM (Kim et al., 2013),
enables us to generate more practical and accurate simulation
results, such as the frequency spectrum in the form of the vibra-
tional density of states (refer to the following subchapter).
Second, we develop the symmetry-constrained elastic network
model, called SCENM (Kim et al., 2003; Lee et al., 2014), to take
the crystal packing effect into account. With the space group infor-
mation in PDB, the corresponding constraints on crystal contact are
properly assigned to the main protein structure. In short, these two
strategies are intended to effectively define the intra-connection
and inter-connection, respectively. The following subchapters
introduce them in more detail.

2.1. Intra-connection model: mass weighed chemical elastic network
model (MWCENM)

MWCENM was originally introduced by Kim et al. (2013) to
describe a feasible conformational change with realistic spring
connections and lumped masses. It is especially useful for closed
proteins, which have often been difficult to properly show the
dynamics of in the standard ENM due to their excessive spring con-
nections. Another benefit of MWCENM is the capability to generate
vibration characteristics of proteins quantitatively. That is, real
physical values of stiffness and mass used in MWCENM enable
us to obtain not only the frequency spectra but also the
corresponding vibration modes of target proteins.
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