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a b s t r a c t

Single particle reconstruction methods based on the maximum-likelihood principle and the expectation–
maximization (E–M) algorithm are popular because of their ability to produce high resolution structures.
However, these algorithms are computationally very expensive, requiring a network of computational
servers. To overcome this computational bottleneck, we propose a new mathematical framework for
accelerating maximum-likelihood reconstructions. The speedup is by orders of magnitude and the pro-
posed algorithm produces similar quality reconstructions compared to the standard maximum-likeli-
hood formulation. Our approach uses subspace approximations of the cryo-electron microscopy (cryo-
EM) data and projection images, greatly reducing the number of image transformations and comparisons
that are computed. Experiments using simulated and actual cryo-EM data show that speedup in overall
execution time compared to traditional maximum-likelihood reconstruction reaches factors of over 300.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

Single particle reconstruction from cryo-electron microscopy
(cryo-EM) is an iterative process that infers the 3D structure of a
macromolecule or a ‘‘particle’’ from many noisy 2D projections of
the particles lying at random orientations. Currently popular
approaches to single particle reconstruction are based on the maxi-
mum-likelihood principle or the related maximum-a-posteriori
principle. All these methods are optimized using the expecta-
tion–maximization (E–M) algorithm (Dempster et al., 1977), which
iterates between the expectation step (E-step) and the maximiza-
tion step (M-step). The E-step calculates latent probabilities for
every possible alignment between particle image and structure
projection. The M-step then uses these latent probabilities to give
weights for alignments in calculating the reconstruction. E–M
algorithms have gained popularity because they perform more
favorably compared to other approaches for data with low
signal-to-noise ratio (SNR).

The maximum-likelihood principle and related methods have
been applied to many cryo-EM reconstruction problems. The first

application of the maximum-likelihood principle in cryo-EM was
for aligning particle images to a single 2D reference (Sigworth,
1998). Since then, several extensions have been proposed. The
maximum-likelihood framework has been applied to 2D mul-
tireference image refinement (Scheres et al., 2005b), single particle
reconstruction (Doerschuk and Johnson, 2000; Yin et al., 2001,
2003), and reconstruction of structurally heterogeneous data
(Scheres et al., 2007). Another extension incorporates prior proba-
bility functions (priors) which encourage smoothness of the 3D
structure, thereby limiting the amount of noise that propagates
through to the reconstruction (Scheres, 2012a,b). More recent pri-
ors include enforcing a sparse representation by using an adaptive,
non-Fourier basis, which improves the SNR and hence the res-
olution of the reconstruction (Kucukelbir et al., 2012). Maximum-
likelihood with priors is referred to as the Bayesian or maxi-
mum-a-posteriori approach.

While reconstruction methods based on maximum-likelihood
and the E–M algorithm have several desirable properties, from a
computational point of view, the E–M algorithm is very slow
(Cheng and Walz, 2009; Sigworth et al., 2010). The computational
bottleneck of the E–M algorithm is the calculation of the latent
probabilities in the E-step. In its naive form, the computational
complexity of the E-step is the number of particle images � the
number of projection directions � the number of image rotations
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and translations; this much computation is prohibitive. For
example, Scheres (2012b) reports that a straightforward E–M
reconstruction of 5053 GroEL particles required almost 25 days,
even while using 56 CPUs in parallel. As data sets are larger by
an order of magnitude or more, such execution times are clearly
unacceptable.

Several heuristics have been proposed to accelerate E–M recon-
struction algorithms (Sigworth et al., 2010). All of these heuristics
depend on the observation that latent probabilities tend to be
peaky; that is, the latent probabilities are high for relatively few
alignments and very low for the rest. If the high probability align-
ments can be found quickly, then the rest can be ignored, speeding
up the calculations. An early strategy used this idea by calculating
latent probabilities only for those alignments whose probabilities
in the previous iteration exceed some threshold (Scheres et al.,
2005a). A more sophisticated strategy utilizes ideas from adaptive
integration, in which the probabilities are calculated on a coarse
sampling and then refined only where most of the probability mass
is concentrated (Tagare et al., 2008, 2010). This adaptive E–M algo-
rithm can be combined with GPU implementation (Tagare et al.,
2010) and local orientation searches (Scheres, 2012b) for further
speedup.

Another strategy is to exploit known symmetries of the particle.
For example, Lee et al. (2007) exploits icosahedral symmetry of
viruses to accelerate E–M reconstructions. The approach utilizes
a fixed basis of spherical harmonics to efficiently sample rotations
(Doerschuk and Johnson, 2000). Furthermore, a linear trans-
formation of the data is applied to speed up E–M calculations.

This paper proposes a completely novel heuristic for speeding
up the E–M algorithm. The idea is to represent the particle images
and structure projections in two different, relatively low-dimen-
sional subspaces that are adapted to the data. This representation
is accurate, so the projections can be rotated, translated, and com-
pared with the particle images simply by performing the
corresponding operations on the subspace bases. Because the num-
ber of basis elements is much smaller than the number of images
and projections, substantial speedup is possible. The approx-
imation using the subspaces is integrated into the maximum-a-
posteriori framework. We refer to the proposed algorithm as
SubspaceEM.

The SubspaceEM algorithm is developed below in the spatial
domain. However, as will become clear in Section 5, the
SubspaceEM algorithm applies without change to the Fourier
domain, where equally significant speedups can be expected.
This is important because some E–M algorithms are implemented
in the spatial domain (e.g., ML3D in Xmipp (Sorzano et al., 2004))
while others are interpreted in the Fourier domain (e.g., RELION
(Scheres, 2012b)). The subspace idea applies to both.

In the following, we begin by describing the mathematical
derivations and implementation of the proposed SubspaceEM
algorithm. After the discussion of the algorithm, experiments are
presented comparing SubspaceEM with the classic E–M algorithm
in reconstructing both simulated and real cryo-EM data. The
computational cost of the SubspaceEM algorithm is compared with
a straightforward implementation of the E–M algorithm. The pur-
pose of these experiments is to examine the potential of the
SubspaceEM algorithm to reduce computational costs by orders
of magnitude without loss in the quality of 3D reconstruction.

2. Mathematical methods

2.1. The maximum-likelihood and maximum-a-posteriori formulations

We first briefly review the maximum-likelihood and maximum-
a-posteriori formulations for single particle reconstruction. An

extensive overview of the theory of maximum-likelihood methods
for cryo-EM analysis is available in Sigworth et al. (2010).

Suppose that S is a particle structure, mathematically repre-
sented as a set of density values on a grid in a three-dimensional
cube. The structure is projected along D directions and a set of F
contrast transfer functions (CTFs), belonging to F defocus classes,
are applied to each projection. This results in M ¼ D� F ‘‘filtered
projected’’ structures, each with a specific defocus class. Let Pj

denote the M ¼ D� F projection operators composed with CTF
operators. Then, each filtered projected structure is given by
PjðSÞ. Reconstruction algorithms, including the E–M algorithm,
compare particle images with these M ¼ D� F filtered projected
structures, but the comparison of any particle image is only with
the filtered projected structures that have the same defocus class
as the image. To express this in the following mathematics, we
tag each filtered projected structure PjðSÞ with its defocus class,
denoted by Cj. The value of Cj is an integer from 1; . . . ; F. We
emphasize that Cj is not the CTF function, but an integer which
indexes the defocus class. In the following, to simplify the
terminology, we will call Pj the projection operator and PjðSÞ a
structure projection whose defocus class is Cj.

Next, let xi; i ¼ 1; . . . ;N, be the cryo-EM particle images. Similar
to the structure projections, each particle image xi is tagged with
its defocus class, denoted by C�i . The defocus class C�i is also an inte-
ger from 1; . . . ; F and is assigned according to the CTF measured
from the micrograph. The cryo-EM image formation model is that
xi is a projected structure of the same defocus class, rotated and
translated, and further corrupted by zero mean additive noise.
The identity of the projection direction is lost in the image forma-
tion process. Letting zi denote the index of the unknown projection
operator relating the structure S to the image xi, the image forma-
tion process is

xi ¼ T si
ðPzi
ðSÞÞ þ ni; with C�i ¼ Czi

: ð1Þ

In the above equation, T si
is the 2D transformation operator which

rotates and shifts the image according to the transformation
parameter si ¼ f/i; tix; tiyg, which specifies the in-plane rotation
angle /i and the translations tix and tiy along the x and y image axes.
Further, ni is the additive white Gaussian noise with zero mean and
standard deviation r. Finally, C�i ¼ Czi

states that the image xi can
only arise due to the action of a projection operator Pzi

whose defo-
cus class Czi

is identical to the image defocus class C�i .
Under the image formation model in Eq. (1), the conditional

probability density that image xi comes from structure S is

pðxijS;r; zi; siÞ ¼
N ðT si

ðPzi
ðSÞÞ;r2Þ if C�i ¼ Czi

0 otherwise

(
; ð2Þ

where NðT si
ðPzi
ðSÞÞ;r2Þ is the probability density function of a

Gaussian random variable with mean T si
ðPzi
ðSÞÞ and variance r2.

The variables zi and si are nuisance or latent variables because
their values are unknown and are not of particular interest.
These variables are eliminated by marginalization, that is, by
integrating them out. Let a ¼ fa1; . . . ;aMg, where aj is the probabil-
ity that zi ¼ j, let Xsi

be the domain of possible values for the trans-
formation parameter si, and let pðsiÞ be the probability of si. Then,
marginalization results in

pðxijS;r;aÞ ¼
XM

j¼1

Z
Xsi

pðxijS;r; j; siÞpðzi ¼ jÞpðsiÞdsi

¼
XM

j¼1

aj

Z
Xsi

pðxijS;r; j; siÞpðsiÞdsi;

ð3Þ

where the sum over j marginalizes zi and the integral marginalizes
si. Simplifying the notation by setting H ¼ fS;r;ag gives
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