ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Journal of Structural Biology 157 (2007) 28-37

Journal of

Structural
Biology

www.elsevier.com/locate/yjsbi

Collaborative EM image processing with the IPLT image

processing library and toolbox

PAe

Ansgar Philippsen *, Andreas D. Schenk, Gian A. Signorell, Valerio Mariani,
Simon Berneche, Andreas Engel

Maurice E. Miiller Institute for Structural Biology, Biozentrum Basel, Switzerland

Received 12 April 2006; received in revised form 13 June 2006; accepted 15 June 2006
Available online 14 July 2006

Abstract

We present the Image Processing Library and Toolbox, IPLT, in the context of a collaborative electron microscopy processing effort,
which has driven the evolution of our software architecture over the last years. The high-level interface design as well as the underlying
implementations are described to demonstrate the flexibility of the IPLT framework. It aims to support the wide range of skills and inter-
ests of methodologically oriented scientists who wish to implement their ideas and algorithms as processing code.

© 2006 Elsevier Inc. All rights reserved.

Keywords: Image processing; Electron crystallography; Software engineering

1. Introduction

Structural investigations of biological samples with the
electron microscope is a continuously growing and evolv-
ing field. The analysis of the measurements to extract the
structural information is referred to as image processing,
because a collection of images forms the majority of raw
data. The 3D EM community has produced, and is produc-
ing, a large collection of sophisticated image processing
algorithms, made available in several software packages.
Here we describe one of these software packages, the Image
Processing Library and Toolbox (IPLT), that was started
in our group, with a special emphasis on the dynamic nat-
ure of the 3D EM research.

In our first paper on IPLT (Philippsen et al., 2003), we
discussed the rational for creating a new image processing
package from scratch, our intended goals, and the architec-
tural design. We wish to provide a modular, integrated,
collaborative, flexible, extendable, open-source, cross-plat-
form framework for image processing of electron micro-

* The IPLT homepage is found at http://www.iplt.org.
* Corresponding author. Fax: +41 61 267 2109.
E-mail address: ansgar.philippsen@unibas.ch (A. Philippsen).

1047-8477/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jsb.2006.06.009

scope images. Modular in the sense that it is build from
clearly separated building blocks that may be used together
as seen fit; integrated implying that it is a single package
whose components have been made to work together; col-
laborative meaning that we do not want it to become an in-
house software only but evolving by means of community
involvement; flexible because it accommodates the various
user requirements; extendable hinting at the intended ease
of adding algorithms and procedures.

This manuscript continues pretty much where the previ-
ous one left off at, namely how the concepts and the first
implementation of the IPLT framework have proven them-
selves within a, albeit small, collaborative environment, in
particular describing the maturation of the architecture
and the currently implemented image processing modules.
This is preceded by a recapitulation of the major features
as well as a discussion of the implementation.

To allow a more concise description of the current state
of IPLT, the software engineering terms user, abstraction,
interface, encapsulation, implementation, instance, class,
and object are introduced. Since these are all coupled, a
suitable definition is the generic statement: An interface
offers an abstract interaction of some encapsulated func-
tionality to a user, who does not need to know any details


http://www.w3.org/XML
mailto:ansgar.philippsen@unibas.ch

A. Philippsen et al. | Journal of Structural Biology 157 (2007) 28-37 29

of the actual implementation of this functionality. In terms
of software development, an abstract concept—like an
image—can be implemented as a set of classes in the con-
text of a specific design; each class has a set of methods,
which form the class interface; each method has its (hid-
den) implementation in the programming language, which
in turn is an abstraction to the CPU instruction set and
implemented in a compiler or interpreter. On the opposite
end, an overall image processing scheme is implemented in
terms of conceptual steps, each in turn leading to concrete
use of the various components of a class library. And final-
ly, the processing application may be completed by adding
a graphical user interface.

In an object oriented language, the construct that offers
this encapsulation scheme is usually referred to as class,
and each instance, i.e. independent unit, of a class is usually
referred to as object. The distinction between class and
object may not seem obvious now, and there are certainly
many contexts where the terms can be interchanged. Here,
we use class when we are talking about a design construct,
and object as the actual use of the class.

While the concepts of interface and implementation have
been around implicitly since the dawn of programming, it is
only with the advent of object oriented design that they have
been explicitly formulated, in particular discussing the diffi-
culties and challenges of designing a good interface, which is
an art in itself. These concepts have proven to be especially
powerful in an environment of larger projects, with evolving
software and heterogeneous developers, exemplified by tech-
niques such as refactoring/extension cycles (Fowler, 1999) or
Extreme Programming (Beck and Andres, 2004).

In the following sections, we describe the interfaces
available in IPLT, descend into some implementation
details where appropriate, and explain the rational for this
particular design. While this manuscript, like the last one,
is still aimed at the interested developer, and not so much
the regular user, one of the major claims contained herein
is that the particular design of the IPLT empowers a casual
user to become a contributor, due to the various frame-
work layers that range from simple Python scripts to
sophisticated C++ routines.

2. Technical description

Since the publication of the first paper on IPLT (Phil-
ippsen et al., 2003), the software has evolved considerably,
not only in the actual processing capabilities, but also in
the software engineering sense, mainly due to its direct
involvement in a collaborative effort to establish a novel
2D electron crystallography processing suite (see below).
As a consequence, several previously described concepts
have been superseded, some design decisions were discard-
ed and replaced with more sophisticated ones. These
changes affect both the interface as well as the implementa-
tion level. Future changes, however, anticipate the integra-
tion of new ideas without affecting the interfaces to ensure
a stable evolution of the system.

The current software architecture of IPLT is schema-
tized in Fig. 1. It comprises C++ and Python components,
where the basic constituents are written in C++ and conse-
quently reflected into Python by means of a wrapper. Con-
ceptually, the C++ level is meant to provide the basic
building blocks, and the processing logic is then imple-
mented on the Python level, utilizing these building blocks.

2.1. Images

The ImageHandle class represents the high-level, cen-
tral image concept in IPLT. It combines several features
and functionalities: First of all, it offers a unified interface
to the underlying image state (explained below) and its
properties, independent of the actual state used, thereby
exempting the users from dealing with all possible state
combinations and their instances. This unified interface
allows access to the image values as well as retrieval of
the essential image properties extent, pixel sampling, type,
and domain. Second, the ImageHandle interface pro-
vides a set of Apply methods which facilitate the interac-
tion with all algorithm objects; in a nutshell, each
algorithm can be applied either in-place or out-of-place,
independent of the actual algorithm object implementa-
tion. Third, in its nature as a handle, it removes all memory
management responsibilities from the user: a handle only
points to an automatically allocated image state instance,
and copying handles will not duplicate this memory area,
but it will be shared by all handles, and de-allocated when
no longer referred to. This feature has the additional
advantage that code in C++ and Python is almost identi-
cal, save for syntax differences (see Fig. 2). Fourth, it sup-
ports the unary or binary operators negation, addition,
subtraction, multiplication, and division, which operate
on a per-pixel level.

In view of all this comfort and sophistication, there is
but a single drawback of the image handle, namely that
reading and writing of pixel values is relatively slow com-
pared to directly accessing the memory. As a consequence,
a special mechanism has been implemented to give develop-
ers access to the particular image state of an image handle,
by means of an image state algorithm—as explained fur-
ther below.

The image state represents the combination of a partic-
ular value storage or pixel type, namely real or complex,
with a particular domain, namely spatial, frequency, or
half-frequency. It manages the actual pixel value memory,
and allows direct, raw access to it. Readers familiar with
such a scheme will immediately notice that the template
feature of C++ is perfectly suited for implementing such
a state ensemble, and this is indeed how it is done. A full
description of the templated implementation is, however,
beyond the scope of this paper. It must suffice to mention
that the particularities of our architecture (mostly the hybrid
implementation of C++ and Python as well as the strong
modularity) render the use of templates complicated. For
this reason, the complexity of dealing with templates has



Download English Version:

https://daneshyari.com/en/article/2829475

Download Persian Version:

https://daneshyari.com/article/2829475

Daneshyari.com


https://daneshyari.com/en/article/2829475
https://daneshyari.com/article/2829475
https://daneshyari.com

