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Applying a method to reconstruct a phylogenetic tree from random data provides a way to detect
whether that method has an inherent bias towards certain tree ‘shapes’. For maximum parsimony,
applied to a sequence of random 2-state data, each possible binary phylogenetic tree has exactly the same
distribution for its parsimony score. Despite this pleasing and slightly surprising symmetry, some binary
phylogenetic trees are more likely than others to be a most parsimonious (MP) tree for a sequence of k
such characters, as we show. For k = 2, and unrooted binary trees on six taxa, any tree with a caterpillar
shape has a higher chance of being an MP tree than any tree with a symmetric shape. On the other hand, if
we take any two binary trees, on any number of taxa, we prove that this bias between the two trees van-
ishes as the number of characters k grows. However, again there is a twist: MP trees on six taxa for k = 2
random binary characters are more likely to have certain shapes than a uniform distribution on binary
phylogenetic trees predicts. Moreover, this shape bias appears, from simulations, to be more pronounced
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for larger values of k.
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1. Introduction

The ‘shape’ of reconstructed evolutionary trees is of interest
to evolutionary biologists, as it should provide some insight into
the processes of speciation and extinction (Aldous, 2001; Aldous
et al., 2011; Hey, 1992; Holton et al, 2014; Lambert et al.,
2013; Stadler, 2013). In this paper, ‘shape’ refers just to the
discrete shape of the tree (i.e. we ignore the branch lengths);
the advantages of this are that it simplifies the analysis, and
it also confers a certain robustness (i.e. the resulting probability
distribution on discrete shapes is often independent of the fine
details of an underlying speciation/extinction model (Aldous,
1995; Lambert et al, 2013)). For example, if all speciation
(and extinction) events affect all taxa at any given epoch in
the same way, then we should expect the shape of a recon-
structed tree to be that predicted by the discrete ‘Yule-Harding’
model (Aldous, 2001; Harding, 1971; Lambert et al.,, 2013). In
fact, a general trend (see e.g. Aldous, 2001) is that the shape
of phylogenetic trees reconstructed from biological data tends
to be a little less balanced than this model predicts, but is more
balanced than what would be obtained under a uniform model
in which each binary phylogenetic tree has the same probability
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(this model is sometimes also called the ‘Proportional-to-
Distinguishable-Arrangements’ (PDA) model (Rosen, 1978)).

There are, however, other factors which can lead to biases in
tree shape. One is non-random sampling of the taxa on which to
construct a tree (influenced, for example, by the particular inter-
ests of the biologists or the application of a certain strategy to sam-
ple taxa). Another cause of possible bias is that a tree
reconstruction method may itself have an inherent preference
towards certain tree shapes. A way to test this latter possibility is
to apply the tree reconstruction method to data that contain no
phylogenetic signal at all, in particular, purely random data, where
each character is generated independently by a process that
assigns states to the taxa uniformly (e.g. by the toss of a fair coin
in the case of two states). For some methods, such as ‘TreePuzzle’,
such data leads to very balanced trees (similar to the Yule-Harding
model (Vinh et al., 2010; Zhu et al., 2013)). However, other meth-
ods, such as maximum likelihood and maximum parsimony, lead
to less balanced trees, that are closer in shape to the uniform
model, as recently reported in Holton et al. (2014). In the case of
maximum parsimony, the two-state symmetric model has the
even-handed property that every binary tree has exactly the same
distribution of its parsimony score on k randomly generated char-
acters. Thus, it might be supposed that the maximum parsimony
(MP) tree for such a sequence of characters would also follow a
uniform distribution. However, while this holds in special cases,
it does not hold in general, as we show below.
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1.1. Trees and parsimony: definitions and basic properties

In phylogenetics, graphs, especially trees, are used to describe
the ancestral relationships among different species. A main goal
of phylogenetics is to infer an evolutionary tree from data available
from present-day species. In graph theory, a tree T = (V,E) consists
of a connected graph with no cycles. Certain leaf-labelled trees
(‘phylogenetic trees’) are widely used where the set of extant spe-
cies label the leaves and the remaining vertices represent ancestral
speciation events (Felsenstein, 2004). There are different methods
of reconstructing a phylogenetic tree. One of the most famous tree
reconstruction methods is maximum parsimony. For a given tree
and discrete character data, the parsimony score can be found in
polynomial time by using the Fitch-Hartigan algorithm (Fitch,
1971; Hartigan, 1973). The parsimony score counts the number
of changes (mutations) required on the tree to describe the data.
This problem of finding the optimal parsimony score for a given
tree is often called the ‘small parsimony’ problem. The ‘big parsi-
mony’ problem aims at finding the most parsimonious tree (‘MP
tree’) amongst all possible trees. This problem has been proven
to be NP-hard (Foulds and Graham, 1982).

In this paper, we assume that each taxon from the leaf set X of
the tree is assigned a binary state (0 or 1) independently, and with
equal probability (the case where the two states have different
probabilities is less interesting, since then the distribution of the
parsimony score of a fixed binary tree is easily seen to depend
on the shape of the tree, even for a single character). This process
is then repeated (also independently) to generate a sequence of
characters (defined formally below). For binary trees with random
data, we are interested in the probability that a tree is an MP tree,
and also what happens when the length of the sequences or the
number of leaves gets larger. In particular, we wish to determine
whether each tree is equally likely to be selected as an MP tree.

Definition 1 (Binary phylogenetic trees). An (unrooted) binary phy-
logenetic X-tree is a tree T with leaf set X and with every interior
(i.e. non-leaf) vertex of degree exactly three. We will let UB(X) be
the set of unrooted binary phylogenetic X-trees. When
X =[n] ={1,...,n}, we will write UB(n).

Definition 2. [Character, extension, parsimony score]

e A character on X over a finite set R of character states is any
function f from X into R; f : X — R. In this paper we will con-
sider two-state characters; f : X — {0,1}.

o Afunctionf : V — Rsuch that f|, = f is said to be an extension of
f since it describes an assignment of states to all vertices of T
that agrees with the states that f stipulates at the leaves.

o Let ch(f,T) := |{e={u,v} €E:f(u)#f(v)}| be the changing
number of f. Given a character f : X — R, the parsimony score of
fonT, denoted ps(f, T), is the smallest changing number of any
extension of f, i.e.:

ps(f,T) := min {ch(f,T)}.
fV=Rfly=f
An extension f of f for which ch(f,T) = ps(f,T) is said to be a
minimal extension.
Let C=(fy,...,f,) be a sequence of characters on X. The
parsimony score of C on T, denoted ps(C,T), is defined by
ps(C.T) = S ps(fi.T).

2. Comparing given trees

Let X, (T) be the parsimony score of k random two-state charac-
ters on T € UB(n). We will see shortly (Proposition 1) that the

distribution of X, (T) does not depend on the shape of T; it just
depends on n. Notice that Xi(T) =X; +X; +--- + X\, where X;
(fori=1,...,k) form a sequence of independent and identically
distributed random variables (with common distribution X;(T)).
If P(X(T) = 1) denotes the probability that T has parsimony score
I then, from Steel (1993), we have, for each I € [1, [n/2]]:

P(XI(T)=1):2“—3’.<"—1—1>.2an "

] 1-1
with P(X;(T) = 0)=2"" and P(X;(T)=1) =0 for > |n/2]. Fur-

1\n-1
thermore, E[X;(T)] = % ~ 1 is the expected parsimony score
of T, and E[Xy(T)] = k - E[X;(T)]. An immediate consequence of (1) is

the following.

Proposition 1. For every k > 1 and n > 2, the distribution of the
parsimony score of k independent random binary characters (i.e.
Xy (T)) is the same for all T € UB(n).

2.1. Comparing two trees by their parsimony score

We begin this section by describing a tree rearrangement opera-
tion on binary phylogenetic trees (Semple and Steel, 2003, Chapter
2.6), namely tree bisection and reconnection (TBR). Let T be a binary
phylogenetic X-tree and let e = {u, v} be an edge of T. A TBR opera-
tion is described as follows. Let T' be the binary tree obtained from
T by deleting e, adding an edge between a vertex that subdivides
an edge of one component of T \ e and a vertex that subdivides an
edge of the other component of T\ e, and then suppressing any
resulting degree-two vertices. In the case that a component of T \ e
consists of a single vertex, then the added edge is attached to this
vertex. T’ is said to be obtained from T by a single TBR operation.

Proposition 2. Let T, T' € UB(n).

o (i) If T and T are one TBR apart, then P(Xy(T) < Xi(T")) =
P(Xk(T') < Xk(T)) holds for all k > 1.

e (ii) If T and T' are more than one TBR apart, then the equality
PXk(T) < Xi(T")) = P(Xe(T') < Xi(T)) can fail, even for k=1
and n =6.

Proof.

(i) From Bryant (2004, Lemma 5.1), if T and T' are one TBR apart
then for any character f, |ps(f,T)—ps(f.T)|<1. In
particular,

[X1(T) = X4 (T")| < 1. (2)

For k > 1, let 4, = Xy(T) — X,(T"). Then if T, T' € UB(n) are one
TBR apart, then A, = X;(T) — X;(T') is either 0, 1 or —1, by (2).
Moreover, P(4; = m) = P(4; = —m) for all m € {0,1 — 1}, since
E[4:] =0, by Proposition 1. Furthermore, A4y =D+ ---+ Dy,
where Dy, ..., D, are independent and identically distributed as
41, So we have:
P(4y=m)= P(D; =mqy ADy =my A---AD=my)
my,...,mge{-1,0,1}:
my+--+mg=m

k
= > [[P(D=m)=
my,...,me{-1,0,1} =1 my,...,me{-1,0,1} =1
mi+--+mg=m mp+---+m=m
= P(D; =m; AD; =my A--- AD=mj) =P(dy = —m).
my,...,m,e{-1,0,1}:

k
HP(DJ': —m;)

my+---+m=-m

This provides the equality P(X(T) < Xk(T")) = P(Xi(T') < X (T))
forall k > 1.
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