FI SEVIER

Contents lists available at ScienceDirect

Molecular Phylogenetics and Evolution

journal homepage: www.elsevier.com/locate/ympev

Phylogeny, biogeography, and ecology of *Ficus* section *Malvanthera* (Moraceae)

Nina Rønsted a,b,c,*, George D. Weiblen b, V. Savolainen a,d, James M. Cook d,e

- ^a Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
- Bell Museum of Natural History, Department of Plant Biology, University of Minnesota, 1445 Gortner Avenue, Saint Paul, MN 55108, USA
- ^c Department of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
- ^d Department of Biological Sciences, Imperial College London, Ascot, UK
- e School of Biological Sciences, University of Reading, Reading RG6 6AS, UK

ARTICLE INFO

Article history: Received 28 June 2007 Revised 2 April 2008 Accepted 5 April 2008 Available online 14 April 2008

Keywords: Moraceae Ficus Malvanthera Phylogeny ITS ETS G3ndh

ABSTRACT

We conducted the first molecular phylogenetic study of Ficus section Malvanthera (Moraceae; subgenus Urostigma) based on 32 Malvanthera accessions and seven outgroups representing other sections of Ficus subgenus Urostigma. We used DNA sequences from the nuclear ribosomal internal and external transcribed spacers (ITS and ETS), and the glyceraldehyde-3-phosphate dehydrogenase (G3pdh) region. Phylogenetic analysis using maximum parsimony, maximum likelihood and Bayesian methods recovered a monophyletic section Malvanthera to the exclusion of the rubber fig, Ficus elastica. The results of the phylogenetic analyses do not conform to any previously proposed taxonomic subdivision of the section and characters used for previous classification are homoplasious. Geographic distribution, however, is highly conserved and Melanesian Malvanthera are monophyletic. A new subdivision of section Malvanthera reflecting phylogenetic relationships is presented. Section Malvanthera likely diversified during a period of isolation in Australia and subsequently colonized New Guinea. Two Australian series are consistent with a pattern of dispersal out of rainforest habitat into drier habitats accompanied by a reduction in plant height during the transition from hemi-epiphytic trees to lithophytic trees and shrubs. In contradiction with a previous study of Pleistodontes phylogeny suggesting multiple changes in pollination behaviour, reconstruction of changes in pollination behaviour on Malvanthera, suggests only one or a few gains of active pollination within the section.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Figs (Ficus, Moraceae) constitute one of the largest genera of angiosperms, with almost 750 species of terrestrial trees, shrubs, hemi-epiphytes, climbers and creepers occurring in the tropics and subtropics worldwide (Berg and Corner, 2005). All species of figs share the distinctive fig inflorescence (syconium), which is the site of an obligate mutualism with pollinating fig wasps of the family Agaonidae (Cook and Rasplus, 2003). Figs are important genetic resources with high economic and nutritional value. They also play an important role in generating biodiversity in the rainforest ecosystem by setting fruits throughout the year and providing an important source of food for most fruit-eating vertebrates in the tropics (Harrison, 2005). Most insects pollinate passively, but fig wasps are one of a few cases, where active pollination behaviour has evolved (Cook and Rasplus, 2003). While most genera of pollinating wasps are active pollinators, five out of 20 genera contain both passive and active pollinators (Kjellberg et al., 2001).

Recent classification divided the genus into six subgenera based primarily on morphology (Berg, 2003). The monoecious subgenus Urostigma, to which section Malvanthera belongs, is the largest with about 280 species worldwide, most of them displaying the characteristic hemi-epiphytic habit (banyans and stranglers). Ficus section Malvanthera Corner (subg. Urostigma) includes 23 species of hemi-epiphytes and lithophytes producing aerial, adventitious, or creeping root systems. The section has its primary centre of diversity in Australia and a second centre in New Guinea and the Bismarck Archipelago. A few species extend eastwards into Oceania (e.g. Lord Howe Island, New Caledonia, the Solomon Islands and Vanuatu). Section Malvanthera includes species with two very distinct ecologies: hemi-epiphytic stranglers and free-standing trees in the rainforests of Eastern Australia and New Guinea, and lithophytic shrubs and trees occurring in more arid parts of Australia (Dixon, 2003).

The section was established by Corner (1959) who recognized 19 species characterized by features including: a slit-shaped or triradiate ostiole with all bracts descending; syconia with two or three basal bracts; reniform unilocular anthers with crescentic or transverse dehiscence; ovaries attached at the base to the receptacle or imbedded in the receptacle; a red spot at the base or the apex

^{*} Corresponding author. Address: Department of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark. E-mail address: nr@farma.ku.dk (N. Rønsted).

of the ovary; and a stigma that is either simple or bifid. Corner (1959) and again Berg and Corner (2005) noted the similarity between subg. *Urostigma* sections *Malvanthera* and *Galoglychia* in the inflexed apical bracts of the ostiole and internal bracts. Berg and Corner (2005) also noted that similarities in venation suggest a relationship between *Malvanthera* and the *F. benjamina* group of section *Urostigma* subsection *Conosycea*. Molecular phylogenetic studies have shown sections *Conosycea* and *Malvanthera* to be sister taxa (Rønsted et al., 2005).

Corner (1965) subdivided section *Malvanthera* into two series. *Malvanthereae* is distinguished by reniform anthers dehiscing longitudinally and crescentically. The series includes 18 species in four loosely defined subseries, *Eubracteatae*, *Hesperidiiformes*, *Malvanthereae*, and *Platypodeae* based on characters of the basal bracts and whether the ovaries are partly embedded in the receptacle or not. The monotypic series *Cyclanthereae* includes *F. sterrocarpa* from New Guinea, which has depressed-subglobose anthers (Table 1).

Chew (1989) followed Corner (1965) in treating Australian *Ficus*, whereas Australian *Malvanthera* were subsequently revised by Dixon (2001a–d, 2003), who proposed a new subdivison of the section into ser. *Malvanthereae* including species with imbri-

cate basal bracts, and ser. *Hesperidiiformes* with valvate basal bracts (Table 1).

In treating *Ficus* of the Malesian region, Berg and Corner (2005) united the monotypic section *Stilpnophyllum* (*F. elastica*, the rubber fig) and section *Malvanthera* as subsections of an expanded section *Stilpnophyllum* based on similarities between *F. elastica* and the *Malvanthera* species in the venation of the lamina, the length of the stipules and cucullate (hood-shaped) caducous basal bracts. However, *F. elastica* is distinct from the *Malvanthera* species in the shape of the ostiole and in having anthers with separate theca and connate stipules. The Indo-Chinese origin of *F. elastica*, which is widely cultivated, also has little geographical affinity to the Australian and Melanesian *Malvanthera*. A global molecular phylogenetic study (Rønsted et al., 2005) including *F. elastica*, 12 species of *Conosycea* figs and 11 species of *Malvanthera* figs strongly suggested that *F. elastica* is a member of section *Conosycea* with a derivative morphology.

Within subsection *Malvanthera*, Berg and Corner (2005) recognised 18 species in three informal groups, based on characters of the basal bracts and ostiole shape. Berg and Corner (2005) united most of Corners species from New Guinea (*F. augusta*, *F. hesperidiformis*, *F. heteromeka*, *F. mafuluensis*, *F. sterrocarpa* and *F. xylosycia*)

Table 1Historical classification of *Ficus* section *Malyanthera*

Rønsted et al. (present study, Fig. 1)	Corner (1965)	Dixon (2003)	Berg (2005) ^h
Subsect. Malvantherae			
F. macrophylla	Subser. Malvanthereae	Ser. Malvanthereae	Subsect. Malvanthera C
F. pleurocarpa	Subser. Hesperidiiformes	Ser. Hesperidiiformes	Subsect. Malvanthera C
Subsect. Hesperidiiformes			
Ser. Hesperidiiformes			
F. hesperidiiformis ^a	Subser. Hesperidiiformes	Ser. Hesperidiiformes	Subsect. Malvanthera A
F. sterrocarpa	Ser. Cyclanthereae	Ser. Hesperidiiformis	F. hesperidiiformes ^a
Ser. Glandiferae ^b			
F. baola ^c	F. obliqua ^c	F. obliqua ^c	Subsect. Malvanthera B
F. glandifera	Subser. Malvanthereae	Ser. Hesperidiiformes	Subsect. Malvanthera B
F. rhizophoriphylla	Subser. Malvanthereae	Ser. Malvanthereae	Subsect. Malvanthera B
Ser. Xylosyciae			
F. augusta	Subser. Hesperidiiformes	Ser. Hesperidiiformes	F. hesperidiiformes ^a
F. heteromeka	Subser. Hesperidiiformes	Ser. Hesperidiiformes	F. hesperidiformes ^a
F. mafuluensis	Subser. Hesperidiiformes	Ser. Hesperidiiformes	F. hesperidiiformes ^a
F. xylosycia	Subser. Hesperidiiformes	Ser. Hesperidiiformes	F. hesperidiiformis ^a
Subsect. Platypodeae			
Ser. Eubracteatae			
F. triradiata	Subser. Eubracteatae	Ser. Hesperidiiformes	Subsect. Malvanthera A
Ser. Obliquae			
F. cerasicarpa ^d	F. leuchotricha ^d	Ser. Malvanthereae	Subsect. Malvanthera C
F. lilliputiana ^e	F. brachypoda ^e	Ser. Malvanthereae	Subsect. Malvanthera C
F. obliqua	Subser. Platypodeae	Ser. Malvanthereae	Subsect. Malvanthera C
F. platypoda ^d	Subser. <i>Platypodeae</i> ^d	Ser. Malvanthereae	Subsect. Malvanthera A
F. subpuberula	Subser. Platypodeae	Ser. Malvanthereae	Subsect. Malvanthera C
Ser. Crassipeae			
F. crassipes	Subser. Hesperidiiformes	Ser. Hesperidiiformes	Subsect. Malvanthera A
F. destruens	Subser. Platypodeae	Ser. Malvanthereae	Subsect. Malvanthera B
Ser. Rubiginosae	n t	6 M I d	
F. atricha ^f	F. platypoda ^f	Ser. Malvanthereae	Subsect. Malvanthera C
F. brachypoda ^t	F. platypoda ^f	Ser. Malvanthereae	Subsect. Malvanthera C
F. rubiginosa ^s F. watkinsiana	Subser. Platypodeae Subser. Malvanthereae	Ser. Malvanthereae Ser. Malvanthereae	Subsect, Malvanthera C
r. watkinsiana	Subset, Matvanthereae	Sei. Maivailinereae	Subsect. Malvanthera C

^a F. hesperidiiformis includes F. augusta, F. heteromeka, F. mafuluensis, F. sterrocarpa, and F. xylosycia in Bergs (2005) classification.

b Series Glandiferae possibly includes F. baola and F. rhizophoriphylla based on morphological affinities such as a slit-shaped ostiole (Berg, 2002).

^c F. baola C.C. Berg was raised from F. obliqua (Berg 2002).

d F. cerasicarpa has affinities to F. platypoda (Dixon 2001a). F. cerasicarpa and F. platypoda were included in F. leuchotricha in Corner's classification.

^e F. lilliputiana is a new species with affinities to F. brachypoda (Dixon 2001b).

^f F. atricha and F. brachypoda were included in F. platypoda in Corner's classification.

^g F. baileyana was included in F. rubiginosa by Dixon (2001d).

h *F. elastica* constituted a monotypic section *Stilpnophyllum* in Corner's classification.

Download English Version:

https://daneshyari.com/en/article/2835186

Download Persian Version:

https://daneshyari.com/article/2835186

<u>Daneshyari.com</u>