
Contents lists available at SciVerse ScienceDirect

Physiological and Molecular Plant Pathology

journal homepage: www.elsevier.com/locate/pmpp

Interference with initial and short-distance cell-to-cell movement of *Tomato mosaic virus* in transgenic tobacco plants with high expression of BcKELP, a virus movement protein interactor from *Brassica campestris*

Nobumitsu Sasaki^{*}, Tatsuro Odawara, Shoko Nagai, Kazuma Yoshimura, Yasuhiko Matsushita, Hiroshi Nyunoya

Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan

ARTICLE INFO

Article history: Accepted 15 January 2012

Keywords: Cell-to-cell movement Tomato mosaic virus Movement protein Transcriptional coactivator Transgenic tobacco Plasmodesmal targeting Plant protection

ABSTRACT

A putative transcriptional coactivator KELP of *Arabidopsis thaliana* and its homolog of *Brassica campestris* (BcKELP) can bind the movement protein (MP) of *Tomato mosaic virus* (ToMV) *in vitro* and, when transiently over-expressed, interfere with the cell-to-cell movement of ToMV. In this study, we generated and selected transgenic *Nicotiana tabacum* lines expressing BcKELP constitutively and examined their resistance to ToMV. We also investigated changes in MP localization in initially infected *Nicotiana ben-thamiana* cells expressing BcKELP transiently. Our results indicate that a high expression of BcKELP can reduce viral initial and short-distance movement probably through disturbance of plasmodesmal targeting of MP.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Tomato mosaic virus (ToMV), formerly referred to as Tobacco mosaic virus (TMV) L strain, belongs to the genus Tobamovirus and contains a single-stranded, messenger sense genomic RNA, which encodes four proteins; 126-kDa, 180-kDa, and 30-kDa nonstructural proteins, and a 19-kDa structural coat protein (CP) [1]. The 126-kDa and 180-kDa proteins are both involved in virus replication. The 30-kDa protein, which is regarded as a movement protein (MP), is indispensable for virus cell-to-cell movement from an initially infected cell to adjacent cells (initial movement) and subsequently to surrounding cells (short-distance movement) through plasmodesmata, cytoplasmic channels connecting adjacent cells. The CP involved in encapsidation is required for virus long-distance spread throughout a whole plant but not for initial or short-distance cell-to-cell movement within a leaf [2]. This virus is thought to move in the form of ribonucleoprotein complexes rather than virus particles. The 30-kDa proteins of ToMV and TMV are the best-studied MPs and shown to have several biochemical and biological properties relating to movement functions. These MPs are reported to bind single-stranded nucleic acid in vitro [3], accumulate at plasmodesmata [4–6], facilitate macromolecular trafficking by increasing the size exclusion limit of plasmodesmata [7,8] and be closely associated with the endoplasmic reticulum and the cytoskeleton such as actin filaments and microtubules [9–13]. A recent study has suggested that TMV MP as well as *Cucumber mosaic virus* (CMV) MP has the ability to sever actin filaments, which are the cytoskeletal and plasmodesmal components involved in virus intracellular and intercellular movement [14]. Although the 30-kDa MP is undoubtedly a key factor for tobamo-virus cell-to-cell movement, a couple of studies have reported that the 126-kDa/180-kDa replicase proteins, which form virus replication complexes (VRCs) transiently with MP [15,16], also play an important role in virus cell-to-cell movement [17–19]. So far, however, little is known about how the replicase proteins are involved in cell-to-cell movement processes.

In the processes of virus cell-to-cell movement, MP is thought to interact with many host proteins [20]. To date, the MPs of ToMV and TMV are shown to bind to diverse host proteins, which may be implicated in facilitating or disturbing virus movement [21]. These proteins include cell-wall-associated pectin methylesterase and calreticulin [22–25], cytoskeletal elements such as actin and tubulin [9,10,14,26], microtubule-associated MPB2C and EB1a [27,28], protein kinases such as RIO kinase and CK2 [29,30], transcription-related factors MBF1 and NTH201 [31,32]. Although the number of the reports on MP-interacting host proteins is increasing, *in vivo* functions of these proteins in virus cell-to-cell movement are not fully understood.

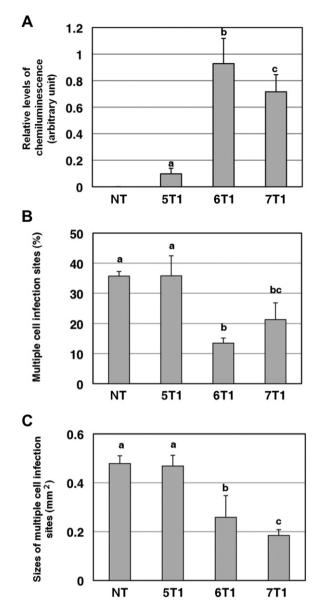
^{*} Corresponding author. Tel./fax: +81 42 367 5840. *E-mail address:* chaki@cc.tuat.ac.jp (N. Sasaki).

^{0885-5765/\$ –} see front matter @ 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.pmpp.2012.01.003

Previously, to identify plant proteins interacting in vitro with ToMV, we performed far-western screening by using a cDNA library of Brassica campestris, a nonhost for ToMV. One of the MP-interacting proteins is highly homologous to a putative transcriptional cofactor called KELP of Arabidopsis thaliana (AtKELP) [33] and accordingly referred to as BcKELP [34]. AtKELP could also bind to the MPs of *Wasabi mottle virus* (WMV: a wasabi strain of crucifer tobamovirus) and CMV [34]. In our recent study, transient over-expression of AtKELP in Nicotiana benthamiana cells resulted in remarkable inhibition of the initial cell-to-cell movement of a ToMV mutant encoding a GFP reporter [35]. Similar results were also obtained from transient expression assays using BcKELP and other KELP homologs of Nicotiana tabacum, Solanum lycopersicum, and Oryza sativa [36]. In intracellular localization analysis by using fluorescently labeled AtKELP and ToMV MP, transiently expressed AtKELP was found predominantly in the nucleus and the cytoplasm in the absence of MP [35]. On the other hand, when MP was expressed transiently in a replication-independent manner, AtKELP was co-localized together with MP at the nucleus, cytoplasmic aggregations and filamentous structures. In accordance with this, the characteristic localization of MP to plasmodesmata was significantly decreased [35]. These results have suggested that KELP proteins can function as an inhibitory factor to prevent the cell-to-cell movement of ToMV through an interaction with MP at least when over-expressed transiently.

In this study, we generated and selected transgenic tobacco lines expressing BcKELP constitutively at high levels and investigated whether they can block the cell-to-cell movement of ToMV effectively. We also observed a time course of changes in intracellular localization of MP at initially infected cells transiently expressing BcKELP.

2. Materials and methods


2.1. Plant materials and growth conditions

N. benthamiana, N. tabacum cv SR1 and transgenic tobacco plants for the expression of BcKELP-HA were grown as described previously [35]. Leaves of 5- to 7-week old *N. benthamiana* and 6- to 9-week old *N. tabacum* were used for experiments. For segregation analysis, seeds were placed on selection medium containing 0.33% Gamborg's B5 Medium Salt Mixture (Wako, Osaka, Japan), 250 μ g/mL kanamycin and 1.5% agar and grown in a growth chamber at 25 °C with a 16-h light/8-h dark photoperiod.

2.2. Plasmid construction

pART27-Bc2-HA used for BcKELP expression was constructed as follows. A cDNA for HA-tagged BcKELP was amplified by PCR with pGEX-Bc2 [34] as a template and primers pGEX (5'-CACGTTTGGTGGTGGCGACC-3') and Bc2R04HA (5'-GCTCTAGA-CTA<u>AGCATAATCAGGAACATCATAAGGATAG</u>ACACGCGATTCCATTTT-3'; HA complementary sequence underlined) and ligated into a TA cloning vector pCR2.1 (Invitrogen, Carlsbad, CA) to introduce the *BcKELP* ORF in the same orientation as the *nptII* gene. Following digestion of the intermediate pCR2.1-based plasmid with *Eco*RV and *Bam*HI, 0.6-kb fragment containing the *BcKELP* cDNA was inserted between *Eco*RV and *Bam*HI sites in pART7, and subsequently to a *Not*I site in pART27 by using the pART7/pART27 binary vector system [37].

piL.G3-MPGFP was constructed as follows. First PCR was carried out by using piL.G3 [38] as a template and a set of primers attB1/ MP/F01 (5'-AAAAAGCAGGCTACCATGGCTCTAGTTGTTAAA-3') and attB/MPG3GFP/R01 (5'-TTCTTCTCCTTTACTATACGAATCAGAATC-3') or primers att/MPG3GFP/F01 (5'-GATTCTGATTCGTATAGTAAAGGA-GAAGAA-3') and attB/G3GFP/R01 (5'-AGAAAGCTGGGTTTTATTTG-TATAGTTC-3'). Those two PCR products were purified and mixed as

Fig. 1. Effects of stable expression of BcKELP-HA on virus cell-to-cell movement. (A) Relative chemiluminescence levels of BcKELP-HA were measured for non-transformed (NT) tobacco and T1 progeny lines of transgenic tobacco (5T1, 6T1, and 7T1). BcKELP-HA was detected with an anti-HA antibody. 5 ng of CST-fused recombinant BcKELP-HA protein from *Escherichia coli* was used as a signal standard which level was set as 1.0 (data not shown). (B, C) Virions of TocJ/GFP were inoculated to non-transformed and transgenic tobacco plants. Infection sites with GFP fluorescence were observed under an epifluorescence microscope at 48 h post-inoculation. The percentage of multiple-cell infection sites in non-transformed and transgenic plants used in these experiments contained the transgene of BcKELP-HA. Bar graphs illustrate average values with standard errors from experiments using eight different plants. Different letters (a, b, and c) above the bars indicate significant difference at p < 0.05 by Tukey's test.

templates together with attB adapter primers [35] in second PCR. The resultant PCR product was purified and introduced to an entry vector pDONR221 (Invitrogen) through a BP reaction. Following digestion of the pDONR-based entry plasmid with *Aat*II and *HpaI*, the 0.5-kb fragment was replaced by the 10.5-kb fragment of piL.G3 located between *Aat*II and *HpaI*.

The coding sequences derived from the PCR fragments in pART27-Bc2-HA and piL.G3-MPGFP were determined to confirm no mutations were present.

Download English Version:

https://daneshyari.com/en/article/2836459

Download Persian Version:

https://daneshyari.com/article/2836459

Daneshyari.com