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a b s t r a c t

Rats move their whiskers to acquire information about their environment. It has been observed that they
palpate novel objects and objects they are required to localize in space. We analyze whisker-based object
localization using two complementary paradigms, namely, active learning and intrinsic-reward rein-
forcement learning. Active learning algorithms select the next training samples according to the hypoth-
esized solution in order to better discriminate between correct and incorrect labels. Intrinsic-reward
reinforcement learning uses prediction errors as the reward to an actor-critic design, such that behavior
converges to the one that optimizes the learning process. We show that in the context of object localiza-
tion, the two paradigms result in palpation whisking as their respective optimal solution. These results
suggest that rats may employ principles of active learning and/or intrinsic reward in tactile exploration
and can guide future research to seek the underlying neuronal mechanisms that implement them. Fur-
thermore, these paradigms are easily transferable to biomimetic whisker-based artificial sensors and
can improve the active exploration of their environment.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Rats are curious animals that use their vibrissae (whiskers) to
explore their environment. Several stereotypical behaviors have
been observed, such as periodic whisking (Gao et al., 2001; Berg
and Kleinfeld, 2003) and touch-induced palpation (Grant et al.,
2009). Recently, whisking behavior has been implemented in ro-
botic whiskers in order to discriminate textures and ascertain
three-dimensional shapes (Solomon and Hartmann, 2006; Evans
et al., 2010; Sullivan et al., 2012). Palpation of novel objects, which
is the focus of the current work, is observed when rats encounter
such an object and can be characterized as a high-frequency
small-amplitude whisker motion, always remaining in the vicinity
of the object. It has received very little attention from the analyti-
cal and robotics-implementation fields (Gordon and Ahissar, 2011;
Gordon and Ahissar, 2012).

Here we show that two seemingly unrelated paradigms,
namely, active learning (Kolodziejski et al., 2009; Bhatnagar
et al., 2007; Govindhasamy et al., 2005) and intrinsic-reward rein-
forcement learning (Barto et al., 2004; Weng, 2004; Oudeyer et al.,
2007; Schmidhuber, 2010), predict that touch-induced palpation is
the optimal behavior for whisker-based object localization. We
then show that in the context of object localization, the two para-

digms are tightly related and suggest neuronal mechanisms that
may implement each.

Rats’ vibrissae system serves as a unique model for neurosci-
ence research due to its relative simplicity. Although its dynamics
becomes more complex as investigations progress (Knutsen and
Ahissar, 2009; Simony et al., 2010), it can be approximated as a
one-dimensional process, controlling a single positional variable,
the whisker’s azimuth angle using a single motor variable, whisker
velocity. Then whisker-based object localization can be defined as
learning the forward model (Jordan, 1992; Shadmehr and
Krakauer, 2008) of touch, i.e. the ability to predict at what angle
and velocity a touch signal, due to contact between the whisker
and object, will occur. The question we address is ‘‘how should a
single-whisker rat move its whisker in order to optimally localize
an object?’’ In other words, what is the rat’s policy that optimizes
learning of the forward model of touch, where optimization is
performed with respect to the learned function (see below).

This scenario can be formulated using the active learning jargon
in the following way (Adejumo and Engelbrecht, 1999; Dasgupta
and Hsu, 2008). The rat samples the sensory-motor space (angle
and velocity) and wishes to correctly label each point as touch or
no-touch. We show that object localization is equivalent to learn-
ing a two-dimensional linear separator (albeit in bounded space
due to angle and velocity limitations). Hence, the goal is to find
the sampling policy that minimizes the error between the pre-
dicted linear separator and the correct one.

In reinforcement learning (RL) notations (Kolodziejski et al.,
2009; Bhatnagar et al., 2007; Govindhasamy et al., 2005), the states
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are the angle of the whisker and the touch information, and the ac-
tion is whisker velocity. Hence in an actor-critic setup (Bhatnagar
et al., 2007), the critic learns the values of each angle/touch point,
whereas the actor adjusts the probabilities of choosing a specific
whisker velocity given an angle/touch state. In conventional RL,
the reward is given by an extrinsic function that is adjusted to
the desired goal, e.g. maximal reward for arriving at a specific loca-
tion. However, in the current implementation of RL, the object
localization component, i.e. a learner that learns the forward model
of touch, provides intrinsic reward (Barto et al., 2004; Weng, 2004;
Oudeyer et al., 2007; Schmidhuber, 2010), here taken to be the pre-
diction error. Thus, the goal is to find the actor that optimizes
learning object localization, i.e. minimizes the generalization error
of the forward model of touch. In other words, the intrinsic-reward
RL converges to a behavior that results in fast increase in accurate
prediction of touch events.

The paper provides a unifying formalism for both approaches,
with respect to object localization via whiskers. This allows the di-
rect comparison of the two approaches, which exhibit remarkably
similar results, namely, palpation behavior. It further enables a for-
mulation of the connection between the two paradigms, also ex-
plored here. A biologically-plausible neuronal network that
implements the proposed models is also presented and discussed.
Finally, the synergistic analysis presented here can facilitate the
application of either techniques in robotic whisker-base sensors
(Solomon and Hartmann, 2006; Evans et al., 2010; Sullivan et al.,
2012).

2. Materials and methods

2.1. Whisker model

We use a simplistic model, in which the rat can control the veloc-
ity of the whisker (Simony et al., 2010). Furthermore, the whisker
itself is rigid, i.e. it cannot bend and hence its azimuth angle cannot
pass the ‘‘object’s angle’’. Thus, the whisker angle is bounded by the
object position and depends on the initial whisker angle, i.e. if it is
initially more retracted (smaller angle) or more protracted (larger
angle) than the object (angular) position. For simplicity, we assume
the whisker to be always more retracted than the object; hence the
object is touched only upon protraction of the whisker. This
assumption is validated by numerous videos of freely moving rats,
in which they encounter novel objects upon protraction in the vast
majority of cases. We also assume that the velocity is bounded, due
to physical constraints.

2.2. Learning a linear separator in sensory-motor space

We formulate the whisker-based object localization setup

mathematically: h 2 hmin; b
h i

is the angle of the whisker, hmin is

the fully retracted angle, and b is the (angular) position of the ob-

ject, with b 2 hmin; hmax
h i

; hmax being the fully protracted angle. This

means that the object can appear anywhere inside the whisker
field. We assume that the whisker is always more retracted than
the angular position of the object, and hence bounded by it.
a 2 amin; amax

� �
is the bounded velocity of the whisker.

The dynamics of the system are given by

h0tþ1 ¼ ht þ at ð1Þ

htþ1 ¼max hmin;minðb; h0tþ1ÞÞ ð2Þ

where h0tþ1 is the attempted angle and Eq. (1) guarantees that the
angle stays within the bounds. The velocity at is the action that
should be optimized (see below). The touch signal is then given by

Btþ1 ¼
1 ht 6 b and h0tþ1 > b

�1 otherwise

�
ð3Þ

This means that if the whisker tried to move from one side of the
object to the other side of the object, there is a touch signal of 1,
otherwise B ¼ �1. One can then define a linear separator of touch,
u ¼ fuh;ua;ubg, such that

uhht þ uaa� ub ¼ uT xt ¼ 0 ð4Þ

where xt ¼ fht ; at ;�1g is a point in 2-dimensional ðx1 ¼ h; x2 ¼ aÞ
space, where x3 ¼ �1 is a constant added to accommodate for the
linear separator’s threshold ub. The linear separator, u, delineates
the boundary between the labeled touch and no-touch regions in
the two-dimensional ðh; aÞ space.

The setup can then be re-formulated as follows: (i) The agent’s
policy determines, based on past knowledge, the action at; (ii) the
dynamics are determined via Eqs. (1) and (3); (iii) the agent re-
ceives fhtþ1;Btþ1g; (iv) based on the action, angle and touch signal,
the agent updates its approximation of the linear separator. (v)
t ! t þ 1, return to (i). The goal is then restated as: find a policy
such that the touch-signal linear separator, u, is learned optimally.

2.3. Perceptron-based active learning

The setup described in the previous section can be modeled by a
perceptron, which is a mathematical construct that receives many
inputs and has a single output. The perceptron output is the result
of applying a (usually) non-linear or threshold function on the
weighted sum of its inputs. In the object localization scenario,
the perceptron inputs and output are the two-dimensional point
(h, a) and touch signal, respectively.

The problem is also related to selective sampling, a branch of
active learning (Settles, 2009), in which one can select whether
to label the sample or not. Since the labeling is usually costly,
the aim is to select which samples to label. We briefly describe a
perceptron-based active learning algorithm taken from Dasgupta
et al. (2009), which actively selects which samples to label and
exhibits an exponential speedup compared to random selections.

Let x be a point on the N-dimensional unit hypersphere,PN
i¼1x2

i ¼ 1. Let u be a vector on the same sphere, such that
y ¼ signðuT xÞ is the label of each point x on the sphere. In each
time-step, t, there is a hypothesis vector, v t . The goal of active
learning is to find u, i.e. change the hypothesis such that v t ! u.

In selective sampling, one is presented with random samples
from the unit sphere, xt . The algorithm presented in Dasgupta
et al. (2009) only labels samples obeying:

jvT
t xt j < qt ð5Þ

where xt is the sample at time t; v t is the current hypothesis/classi-
fier and qt is an adaptive threshold that decreases as learning pro-
gresses. It was shown that the update rule of the hypothesis, v t ,
given by

v tþ1 ¼ v t � 2ðvT
t xtÞxt ð6Þ

results in a number of required labels that is exponentially smaller
for a given error, compared to random labeling. The crux of the
algorithm in Dasgupta et al. (2009) is the adaptive threshold qt ,
which adapts according to the following rule: if predictions were
correct on R consecutive labeled examples, then set qtþ1 ¼ qt=2, else
qtþ1 ¼ qt . This means that the adaptive threshold decreases as the
error in the prediction decreases.

2.4. Reinforcement active learning

Reinforcement learning (RL) deals with the question of finding
an actor that maximizes (future) accumulated rewards. In our
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