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A finite element model to analyze externally prestressed steel–concrete composite beams under short and long-
term loads is developed. The nonlinear geometric effect is considered by introducing flexural and axial interaction
in the finite element formulation and by updating the eccentricities of external tendons in the numerical procedure.
A layered technique is employed to describe varied material properties across the composite section. The time-
dependent effects are also introduced in the model. External prestressing is considered to contribute to equivalent
nodal loads. The analysis is able to simulate the short-termbehavior of externally prestressed composite beams at all
ranges of loading up to failure and also to model the long-term behavior of these beams at service loads. The
proposed model is validated by comparisons with available experimental data as well as other analysis results.
Typical short and long-term responses of steel–concrete composite beams with and without external prestressing
are evaluated.
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1. Introduction

External tendons have been widely employed to strengthen or erect
steel–concrete composite beams. Composite beams with external
prestressing possess many attractive merits such as excellent crack
resistance, low service-load deflection, high ultimate flexural capacity
and favorable fatigue behavior [1]. There are two features that bring
difficulties in the analysis of externally prestressed steel–concrete
composite beams. Firstly, because of the unbonded nature of external
tendons, the increase in tendon strain is dependent on the deformation
of thewholemember and, therefore, the tendon stress cannot be deter-
mined by a single section analysis. Secondly, the effective tendon
depths would change when a member deflects, except at deviator and
anchorage points, causing what is termed as second-order effects [2].

A number of works were reported on nonlinear analysis of externally
prestressed steel–concrete composite beams. Ayyub et al. [3] used a strain
compatibility method based on the force equilibrium and deformation
compatibility to determine the complete response of externally pre-
stressed composite beams. By using an empirical equation for computing
the tendon stress, Zhang and Fu [4] proposed an analytical method to
determine the ultimatemoment resistance of externally prestressed com-
posite box beams. Based on the observation that the strain and curvature
distributions at ultimate would not vary substantially under given condi-
tions, Zona et al. [5] developed a simplified approach for evaluating the
moment capacity of externally prestressed composite beams. General

numerical methods of analysis have also been available in the literature.
Refs. [6,7] presented a set of theoretical works on the development of
finite element models for steel–concrete composite beams with external
prestressing. Some investigators [8,9] carried out finite element studies
on the behavior of externally prestressed composite beamsusing the soft-
ware packages such as ABAQUS and ANSYS.

Although someanalytical andnumericalmodels have been reported,
most of the available models dealt only with the analysis of composite
beams under short-term loads, neglecting the time-dependent effects
which are recognized to be critically important in practice. In a previous
study by the authors [10], the time-dependent effects were introduced
in a finite element model for internally unbonded prestressed concrete
beams. More recently, the authors [11] outlined a numerical procedure
for externally prestressed concrete beams, taking into account second-
order interaction with time-dependent effects. The above-mentioned
time-dependent models [10,11], however, were limited to reinforced
concrete beams with external or internal unbonded prestressing.
These models are extended in this study to the short-term and long-
term analysis of steel–concrete composite beams prestressed with exter-
nal tendons. Numerical examples are given to illustrate the reliability and
applicability of the proposed model.

2. Material stress–strain curves and concrete creep

2.1. Stress–strain curves of materials

The stress–strain curve of concrete in short-term uniaxial compres-
sion consists of parabolic ascending and linear descending portions [12],
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while the stress–strain curve of concrete in tension consists of elastic and
linear tension-stiffening portions, as illustrated in Fig. 1(a), where
σc and εcm = concrete stress and mechanical strain, respectively; fc' =
concrete cylinder compressive strength; εu = 0.0033; ft = concrete
tensile strength; εt0 = strain at the end of tension-stiffening, taken as
10 times the cracking strain.

The stress–strain equation for prestressing steel proposed by
Menegotto and Pinto [13] is used here. The stress–strain curve is
shown in Fig. 1(b), where σp and εp = stress and mechanical strain of
prestressing steel, respectively; Ep and fpy = elastic modulus and yield
stress of prestressing steel, respectively; and K, Q and R=empirical co-
efficients. For Grade 270, 7-wire strands as used in the experimental
beams analyzed in the present study, the values of K, Q and R are
1.0618, 0.01174 and 7.344, respectively.

The nonprestressed steel in tension and compression is linear elastic
up to yielding, followed by linear strain-hardening, as illustrated
in Fig. 1(c), in which σs and εs = stress and mechanical strain of
nonprestressed steel, respectively; and fy=yield strength. Themodulus
of strain-hardening Esh is assumed to be 1.5% of the steel modulus of
elasticity Es.

2.2. Creep of concrete

The present analysis assumes that the concrete nonmechanical stain
consists of the shrinkage strain εcsh and the creep strain εccr. Concrete
creep is associated with stress history. At service loads, a linear creep
lawmay be applied and, therefore, creep of concrete may be expressed
as follows

εcrc tð Þ ¼ σ c t0ð ÞC t; t0ð Þ þ
Z t

t0
C t; τð Þ ∂σ c τð Þ

∂τ
dτ ð1Þ

where σc(t0) = initial stress applied at time t0 and σc(τ) = stress
applied at time τ; C(t,τ) = creep function, expressed here by [14]

C t; τð Þ ¼
Xm
k¼1

ϕk τð Þ 1−e−rk t−τð Þ
h i

ð2Þ

in whichm, ϕk(τ) and rk = creep coefficients.
Denote by Δtn the time interval from time tn−1 to tn. The creep strain

increment Δεccr at Δtn is given by [15]

Δεcrc ¼ εcrc tnð Þ−εcrc tn−1ð Þ ¼ ηn þ C tn; tn−1=2
� �

Δσn ð3Þ

ηn ¼
Xm
k¼1

1−e−rkΔtn
� �

ωkn ð4Þ

ωkn ¼ ωk n−1ð Þe
−rkΔtn−1 þ Δσn−1ϕk t n−1ð Þ−1=2

� �
e−rkΔtn−1=2 ð5aÞ

ωk1 ¼ σ c t0ð Þϕk t0ð Þ ð5bÞ

where tn−1/2 = intermediate time between tn−1 and tn; Δσn = stress
increment at time intervalΔtn; Eqs. (5a) and (5b) are recursive formula
by which the concrete creep can be effectively determined by storing
the value of ωk(n−1) only, instead of recording the entire stress history.

3. Finite element method

The finite element method is formulated based on the following
simplified assumptions: (1) a beam element is divided into discrete
layers so as to describe varied material properties across the depth of
a composite section; (2) plane sections remain plane after deformation;
(3) the relative slip between steel beam and concrete slab, as well as
between reinforcing steel and surrounding concrete, is negligible;
(4) the effect of shear deformation is negligible (i.e., Euler–Bernoulli
beam theory is applied). A plane beamelement as shown in Fig. 2 is con-
sidered here. The local coordinate system (x, y), in which the element
properties are to be described, is defined by the two end nodes of
the beam element. There are three degrees of freedom for each node:
x, y-displacements u, v and rotation θ. Assume there are linear and
cubic variations of u and v with respect to x, respectively. The x and
y-displacements are related to the element nodal displacements by

u ¼ N1ui þ N4uj ð6aÞ

v ¼ N2vi þ N3θi þ N5vj þ N6θ j ð6bÞ

whereN1=1−ξ;N2=1−3ξ2+2ξ3;N3= l(ξ−2ξ2+ξ3);N4=ξ;N5=
3ξ2−2ξ3; N6= l(−ξ2+ξ3); ξ=x/l in which l = element length.

The incremental strain–displacement relationship for an element
can be expressed as follows

Δε ¼ Bþ ΔueT JT J=2
� �

Δue ð7Þ

B ¼ N
0
1 −N}

2y −N}
3y N

0
4 −N}

5y −N}
6y

h i
ð8Þ

J ¼ 0 N
0
2 N

0
3 0 N

0
5 N

0
6

h i
ð9Þ

where ue = element nodal displacements written as {ui, vi, θi, uj, vj,
θj}T.

Fig. 1.Material stress–strain curves. (a) Concrete; (b) prestressing steel; (c) nonprestressed steel.
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