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Abstract

Directed information transfer in the human brain occurs presumably by oscillations. As of yet, most approaches for the analysis
of these oscillations are based on time–frequency or coherence analysis. The present work concerns the modeling of cortical 600 Hz
oscillations, localized within the Brodmann Areas 3b and 1 after stimulation of the nervus medianus, by means of coupled differ-
ential equations. This approach leads to the so-called parameter identification problem, where based on a given data set, a set of
unknown parameters of a system of ordinary differential equations is determined by special optimization procedures. Some suitable
algorithms for this task are presented in this paper. Finally an oscillatory network model is optimally fitted to the data taken from
ten volunteers.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Particularly in chemistry [1], physics [19,31,36,41],
biochemistry [30], biology [5], geography [6] and medi-
cine [21] oscillatory network models are utilized for
explaining the underlying principles and effects of the
observed data. Each system is governed by its own
parameter set. In practice, the model is often known,
but the actual parameters (at least some of them), e.g.
mass or spring constant in a mass spring system, remain
unknown. The only possibility to determine these
parameters is to fit the model to observed data.

If the fitting procedure is accomplished, the deter-
mined parameters should usually give a good estimate

of the actual unknown parameters. This general task is
called parameter identification; the process involves
deriving a model to fit the model by using a variety of
numerical tools and a statistical evaluation of the fitted
model.

Oscillatory networks (coupled oscillators) are mathe-
matical models for the description of different pheno-
mena in many areas of science and engineering.
Particularly, they were applied to the study of non-linear
dynamics and synchronization [13,16,27,38,39], in chem-
istry [22], in pattern recognition and in image processing
[2,4,23], and to the modeling of synchronization of rhyth-
mic brain activity [12,37]. Effects like e.g. superposition,
synchronization or chaos may be observed in oscillatory
networks and depend on the intrinsic mechanism of oscil-
lation and on the nature of the network couplings.

In the present paper, we review the process of param-
eter identification in combination with oscillatory net-
works and provide a list of useful tools to accomplish
this task. Furthermore, we introduce a two-dimensional
forced coupled oscillatory network for electrical 600 Hz
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brain activities in the areas 3b and 1 including forcing
thalamic activity, which can be assumed when periphe-
ral nerves are stimulated [10,11,15,33]. The origin and
function of these 600 Hz activities are not completely
understood yet, but a causal connection seems to be
likely. The aim was to derive a fairly uncomplicated
model which may describe the spatial–temporal features
of these 600 Hz activities. The model may be used to
analyze the directed information transfer of the somato-
sensory system.

2. Materials

Somatosensory evoked potentials and magnetic fields
were simultaneously derived from 10 healthy volunteers
after an electrical stimulation of the nervus medianus
(7000 averages, 5 kHz sampling frequency, 1500 Hz
anti-aliasing low pass filter). Additionally, a 3D MRI
data set was acquired from each volunteer.

The measurement was performed with 31 magnetic
channels (Phillips, Hamburg, Germany) and 32 electrical
channels (Neuroscan, El Paso, USA). The stimulation
was given by rectangular electrical impulses of duration
0.2 ms. The stimulation frequency was 4 Hz. For each
volunteer, the individual sensory and motor thresholds
were determined, and the stimulation was applied with
a current corresponding to the sum of both thresholds.
The stimulated arm was covered during the measurement
in order to avoid a cooling. To improve the signal to noise
ratio, the registered data were filtered offline by means of
an optimal filter (Wiener filter) and were additionally dig-
itally filtered by a third-order Butterworth filter with a
band of 450–750 Hz. Afterwards, a singular value
decomposition was performed and the noise proportion
was eliminated. Electrical as well as magnetic data were
used simultaneously for a source reconstruction.

The 3D MRI data of the 10 volunteers were used for
the computation of an individual head model consisting
of the three components skin, cranium and brain. The
individual head models were used for the subsequent
source localization [14].

The locations of the Brodmann Areas 3b and 1 were
localized by fitting a 2-dipol-model with the help of the
Nelder–Mead Simplex algorithm. The activity of the
thalamus could not be localized. The activation time
courses of the 600 Hz activity formed the observation
data for the fitting of the oscillatory network models.

3. Methods

3.1. Oscillatory networks

Generally, an oscillatory network is described by a set
of coupled oscillators. In order to introduce an oscilla-

tory network, firstly the notion of an oscillator is for-
mally given in this section. Furthermore, a possible
way for coupling different oscillators is described.

There are many known different oscillator types,
which are commonly formalized mathematically by or-
dinary differential equations of first or second-order,
respectively. Without loss of generality, we would like
to focus on a formal description of an oscillator by the
second-order differential equation. That is, the temporal
behavior of an oscillator is defined by a differential
equation

€x ¼ f ðx; _x; tÞ; xð0Þ ¼ x0; _xð0Þ ¼ v0; ð1Þ
where x(t) denotes the state of the oscillator at time t,
and _xðtÞ stands for its velocity. The function f describes
the dynamic of the oscillator. At time zero, the oscillator
has the starting state x0 and the starting velocity v0.
When the right-hand side of Eq. (1) depends linearly
on the state x and the velocity, an oscillator is termed
a linear oscillator. Otherwise, it is called non-linear.
The most simple and best known linear oscillator is
the damped harmonic oscillator given by

€x ¼ �ð2p-Þ2x� l _x; xð0Þ ¼ x0; _xð0Þ ¼ v0. ð2Þ
In this notation, - defines the frequency, and the start-
ing values x0 and v0 give the amplitude and phase of
oscillation implicitly. The non-negative parameter
l P 0 is called a damping parameter and describes
how fast a possible amplitude depression occurs. A van-
ishing damping parameter results in a harmonic oscilla-
tion. Adding an additional time-variant ‘‘force’’ to the
right-hand side of Eq. (2), a so called forced oscillator
results. Formally, such an oscillator is defined by

€x ¼ �ð2p-Þ2x� l _xþ gðtÞ; xð0Þ ¼ x0; _xð0Þ ¼ v0 ð3Þ

with a continuous function g.
Let y be an arbitrary second oscillator. Its state y as

well as its velocity _y are continuous functions in time.
Consequently, these two functions may serve as a
time-variant force for the oscillator x. On the other
hand, the oscillator x may be used to force y. In this
way, it is easy to formulate an oscillatory network of
two linear oscillators e.g. by

€x¼�ð2p-xÞ2x�lx _xþ exyy; xð0Þ¼ x0; _xð0Þ¼ v0;

€y¼�ð2p-yÞ2y�ly _yþ eyxx; yð0Þ¼ y0; _yð0Þ¼ g0. ð4Þ

Instead of coupling the oscillators by means of the
states, it is also possible to couple by means of velocity.
To decide which type of coupling should be chosen for a
certain problem depends on content related aspects
which need to be taken into consideration. Furthermore,
the coupling does not depend on the linear type of
oscillators. The same construction is valid for arbitrary
oscillators. Moreover, it is not necessary to choose the
same type of network oscillators. Here for the sake of
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