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a b s t r a c t

The success of hyperthermia in the treatment of cancer depends on the precise prediction and control of
temperature. It was absolutely a necessity for hyperthermia treatment planning to understand the
temperature distribution within living biological tissues. In this paper, dual-phase-lag model of bio-heat
transfer has been studied using Gaussian distribution source term under most generalized boundary
condition during hyperthermia treatment. An approximate analytical solution of the present problem has
been done by Finite element wavelet Galerkin method which uses Legendre wavelet as a basis function.
Multi-resolution analysis of Legendre wavelet in the present case localizes small scale variations of so-
lution and fast switching of functional bases. The whole analysis is presented in dimensionless form. The
dual-phase-lag model of bio-heat transfer has compared with Pennes and Thermal wave model of bio-
heat transfer and it has been found that large differences in the temperature at the hyperthermia po-
sition and time to achieve the hyperthermia temperature exist, when we increase the value of τT. Par-
ticular cases when surface subjected to boundary condition of 1st, 2nd and 3rd kind are discussed in
detail. The use of dual-phase-lag model of bio-heat transfer and finite element wavelet Galerkin method
as a solution method helps in precise prediction of temperature. Gaussian distribution source term helps
in control of temperature during hyperthermia treatment. So, it makes this study more useful for clinical
applications.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Cancer is a life threatening disease. It is leading cause of death
in developed countries and second leading cause of death in de-
veloping countries (Global Cancer Facts and Figs., 2011). Cancer is a
group of disease characterized by unlimited growth and spread of
abnormal cells. It is caused by both internal (hormones, inherited
mutations) and external (Tobacco, infectious disease, etc.) factors.
The development of most cancers requires multiple steps that
occur over many years, so their early detection and treatment are
possible. Hyperthermia is one of the most commonly used thermal
therapies for cancer treatment. It is an adjuvant therapy means it
is used along with some other treatment modalities like che-
motherapy, radiotherapy and surgery to enhance the effectiveness
of the treatment. In hyperthermia treatment, the temperature at
the site of cancerous cell (tumor) is increased by using some ex-
ternal means (ultrasound, radio-frequency, micro-waves, infrared
radiation, magnetically excitable thermoseeds, tube with hot

water, etc., Xu et al., 2009) resulting in changing the physiology of
diseased cells which leads to apoptosis (cell death). Depending
on the degree of temperature raise, it may be classified into
thermal ablation T(46 C 56 C)° < < ° , moderate hyperthermia

T(41 C 46 C)° < < ° and diathermia T( 41 C)< ° . Further, on the ba-
sis of location of the disease, it is classified into local, regional and
whole body hyperthermia. Local hyperthermia involves subjection
of heat only to a small area such as tumor. Regional hyperthermia
involves larger areas such as whole tissue and organ. Whole body
hyperthermia is applied to treat metastatic cancerous cells when it
spreads throughout the body (Kumar and Challa, 2011). For the
success of any type of hyperthermia treatment precise prediction
and control of temperature are always needed (Das et al., 2013;
Gupta et al., 2013). There are a number of bio-heat transfer
equations (Bhowmik et al., 2013) for living biological tissues given
by Pennes (1948), Weinbaum and Jiji (1985), Nakayama and
Kuwahara (2008) and many others. But due to simplicity Pennes
bio-heat transfer equation is used most commonly for inter-
pretation of thermal data. The conduction term in the Pennes bio-
heat transfer equation is based on classical Fourier's law

q r t k T r t( , ) ( , ). (1)= − ∇
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It assumes that the heat flux vector q r t( , ) and temperature gra-
dient T r t( , )∇ appear at the same instant of time i.e. thermal signal
propagates with infinite speed. It means that any thermal dis-
turbance produced at a certain location will be felt throughout the
medium at that instant. In fact, heat is always found to propagate
with a finite speed within living biological tissues as they have
highly non-homogeneous inner structure. To solve the paradox
occurred in the Pennes bio-heat equation, thermal wave model of
bio-heat transfer has been proposed based on single-phase-lag-
ging (SPL) (Cattaneo, 1958; Vernotte, 1958) constitutive relation

q r t k T r t( , ) ( , ), (2)qτ+ = − ∇

where a relaxation time τq has added to capture the micro-scale
response in time. The relaxation time τq actually represents the
time needed to establish the heat flux when a temperature gra-
dient is suddenly imposed. Although the thermal wave model of
bio-heat transfer taken into account of micro-scale responses in
time, it does not capture the micro-scale responses in space. Due
to this it produces some unusual thermal behavior. In order to
consider the effect of micro-structural interactions along with the
fast transient effects, a phase lag for temperature gradient τT has
introduced in SPL constitutive relation

q r t k T r t( , ) ( , ). (3)q Tτ τ+ = − ∇ +

According to this relation, the temperature gradient at a point r at
time t Tτ+ corresponds to the heat flux at r at time t qτ+ . The
corresponding model is called the DPL model of bio-heat transfer
(Tzou, 1996). Recently, Rukolaine (2014) has explained some
unphysical effects of DPL model of heat conduction.

Since Pennes bio-heat equation is a modified form of energy
equation, so different numerical methods (Wang et al., 2008) are
available in literature for solving them like finite difference
method (Shen et al., 2005; Yuan, 2009; Pletcher, 2009), finite
difference-decomposition method (Gupta et al., 2013), homotopy
perturbation method (Gupta et al., 2010) and finite volume
method (Versteeg and Malalasekera, 1995). Shih et al. (2007)
solved the Pennes bio-heat transfer equation with sinusoidal sur-
face heat flux on the skin as semi-infinite domain. Ahmadikia et al.
(2012) did analytic solution of both parabolic and hyperbolic bio-
heat transfer equation. Liu and Chen (2009, 2010) solved the DPL
bio-heat model using hybrid numerical scheme.

In the present study, we have to obtain the solution of the DPL
model of bio-heat transfer equation under most generalized
boundary conditions. Discretizing in space co-ordinate,the

problem is converted in to a system of O.D.E's with initial condi-
tions. This system of O.D.E's in unknown variables has been solved
by Wavelet Galerkin approach. This reduces our problem into
Sylvester equation. Solution of this Sylvester equation gives di-
mensionless temperature. The analytical solution using Laplace
transform technique and approximate analytical solution obtained
using FEWGM show good agreement. This proves the rationality
and reliability of our solution scheme.

2. Mathematical formulation

During hyperthermia treatment, the body tissue which is in-
itially at a constant temperature T 37 C0 = ° is heated by some ex-
ternal heat source. In order to consider the micro-scale responses
in both time and space DPL constitutive relation is used to derive
the DPL model of bio-heat transfer

q y t k T y t( , ) ( , ), (4)q Tτ τ+ = − ∇ +

where q is the heat flux, T is the temperature, T∇ is the tem-
perature gradient, k is the thermal conductivity, τq is the phase lag
of heat flux and τT is the phase lag of temperature gradient. τq has
been introduced to take account of fast transient effects which
induces the behavior of thermal wave whereas τT represent micro-
structural interactions. The heat flux precedes the temperature
gradient for q Tτ τ< and temperature gradient precedes the heat
flux for T qτ τ< .

In a local energy balance, the one-dimensional energy equation
of the present problem is
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where ρ and c denote density and specific heat of tissue, respec-
tively, ωb, cb, and Tb is the perfusion rate, specific heat and arterial
temperature of blood, respectively. qm is the metabolic heat gen-
eration (Rai and Rai, 1999) and qr is the Gaussian distribution
heating source term (Liu, 2011).

Now eliminating q from Eqs. (4) and (5) gives rise to
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Nomenclature

c thermal wave propagation speed, m/s
cb specific heat of blood, J/kg K
k thermal conductivity of tissue, W/m K
L length of tissue, m
qm metabolic heat generation, W/m3

qr spatial heating source, W/m3

t time, s
T temperature of tissue, K
Tb arterial temperature, K
Wb perfusion rate of blood, m3/s/m3

q heat flux, W/m2

y spatial coordinate, m
τq phase lag of heat flux , s
τT phase lag of temperature gradient, s

Dimensionless variable and similarity criteria

x dimensionless space coordinate
Fo Fourier number or dimensionless time
Foq dimensionless phase lag of heat flux
FoT dimensionless phase lag of temperature gradient
θ dimensionless local tissue temperature
θb dimensionless arterial blood temperature
θw dimensionless surface temperature
θf dimensionless ambient temperature
Pf dimensionless blood perfusion coefficient
Pr dimensionless external heat source coefficient
Pm dimensionless metabolic heat source coefficient
Ki Kirchhoff number
Bi Biot number
a dilation parameter
xn location of tumor in tissue
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