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This paper presents a displacement-based finite element procedure for second-order spread-of-plasticity
analysis of plane steel frames with nonlinear beam-to-column connections under dynamic and seismic loadings.
A partially strain-hardening elastic–plastic beam-column element, which directly takes into account geometric
nonlinearity, gradual yielding of material, and flexibility of nonlinear connections, is proposed. Three major
sources of damping are considered at the same time. They are structural viscous damping, hysteretic damping
due to inelastic material, and hysteretic damping due to nonlinear connections. A nonlinear solution procedure
based on the combination of the Hilber–Hughes–Taylor method and the well-known Newton–Raphson equilib-
rium iterative algorithm is proposed for solving differential equations ofmotion. The dynamic behavior predicted
by the proposed program compares well with those given by the commercial finite element software ABAQUS
and previous studies. Coupling effects of three primary sources of nonlinearity, the bowing effect, geometric
imperfections, and residual stress are investigated and discussed in this paper.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Conventional designs usually assume that beam-to-column connec-
tions are fully rigid or ideally pinned. This assumption causes an inaccu-
rate prediction of the seismic response of moment-resisting steel frames
because the realmoment–rotation relationship of connections is a nonlin-
ear curve, and such connections are called semi-rigid connections. Several
dynamic tests were carried out to investigate the ductile and stable
hysteretic behavior of steel frames,which is one of the important features
of semi-rigid connections under cyclic and seismic loadings [1–6].

In order to predict actual behavior of steel frames, especially in
severe loading conditions, advanced analysis methods are employed. An
advanced analysis must include key factors of steel frames such as geo-
metric nonlinearities (P-large delta and P-small delta effects), plasticity
of material, nonlinear connections, geometric imperfections (out-of-
straightness and out-of-plumbness), and residual stress, simultaneously.
There are two beam-column approaches for advanced analysis of steel
frame structures: (i) the plastic hinge approach (concentrated plasticity)
and (ii) the distributed plasticity approach (spread-of-plasticity). In the
former approach, once yielding criteria is obtained, a plastic hinge will
form at one of monitored points on the member (usually at the two
ends). This method is a computationally efficient and simple way to
consider the effect of inelastic material. However, the hinge methods
overpredict the limit strength of structures [7–9], which can also lead to

unsafe designs. What's more, it may inadequately give information as to
what is happening inside the member because the member is assumed
to remain fully elastic between plastic hinges. On the other hand, by the
distributed plasticity approach, yielding spreads throughout the whole
length and depth of members. Therefore, the distributed plasticity meth-
od is more accurate than plastic hinge methods in capturing the inelastic
behavior of frame structures under severe loadings.

In the last two decades, there have not beenmany analytical studies
about the second-order inelastic dynamic behavior of steel frames with
nonlinear semi-rigid connections [10–14]. Gao andHaldar [10] present-
ed an efficient and robust finite-element-based method for estimating
nonlinear responses of space structures with partially restrained con-
nections under dynamic and seismic loadings. Lui and Lopes [11] pro-
posed an approach for dynamic analysis of semi-rigid frames using
stability functions, the tangent modulus concept, and the bilinear
model for capturing the effects of geometrical nonlinearities, inelastic
behavior, and connection flexibility, respectively. In 1999, Awkar and
Lui [12] developed the method of Lui and Lopes [11] for multi-story
semi-rigid frames. Chan and Chui [13] published a book about static
and dynamic analysis of semi-rigid steel frames, inwhich they proposed
a spring-in-seriesmodel for simulatingmaterial plasticity and nonlinear
connections; both plastic hinge and refined plastic-hinge methods are
presented in detail. Recently, Sekulovic and Nefovska-Danilovic [14] ap-
plied the refined plastic hinge method and the spring-in-series concept
proposed by Chan and Chui [13] for transient analysis of inelastic steel
frames with nonlinear connections; however, their study ignored the
P-small delta effects. All the abovementioned studies utilized the plastic
hinge methods. Thus, analytical researches about the second-order
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distributed plasticity analysis of semi-rigid steel frames under dynamic
loadings are uncommon.

In this paper, a sophisticated second-order spread-of-plasticity
method proposed by Foley and Vinnakota [15–18] for static analysis is
developed for nonlinear inelastic time-history analysis of plane semi-
rigid steel frames. An elastic–perfectly plastic model with linear strain
hardening is applied to establish a new nonlinear element tangent stiff-
ness matrix based on the principle of stationary potential energy. Accu-
rately, to capture the second-order effects and spread of plasticity, each
frame member is divided into many sub-elements along the member
length and the cross-section depth. The tangent stiffness matrix of the
nonlinear beam-column element directly takes into account the effects
of geometric nonlinearity, gradual yielding, and flexibility of nonlinear
connections. Nonlinear connections are simulated by zero-length rota-
tional springs. The moving of the strain-hardening and elastic neutral
axis, which are due to gradual yielding of the cross-section, is directly
included in the element tangent stiffness matrix, and this effect is up-
dated during the analysis process. The bowing effect, geometrical im-
perfections, and residual stress are also considered in this study. Three
major sources of damping are integrated in the same analysis. They
are structural viscous damping, hysteretic damping due to nonlinear
connections, and hysteretic damping due to material plasticity. A nu-
merical procedure using the Hilber–Hughes–Taylor (HHT) method
[19] and the well-known Newton–Raphson iterative algorithm is pro-
posed to solve nonlinear equations of motion. Several numerical exam-
ples are performed to illustrate the accuracy, validity, and features of the
proposed second-order inelastic dynamic analysis procedure for steel
frames with nonlinear flexible connections.

2. Nonlinear finite element formulation

2.1. Beam-column element including the second-order effects and distribut-
ed plasticity

Investigation of a typical beam-columnmember subjected to loads is
plotted in Fig. 1. In order to capture the distributed plasticity, the beam-
columnmember is divided into n elements along themember length as
illustrated in Fig. 2; each element is divided intom smallfiberswithin its
cross section as illustrated in Fig. 3; and, each fiber is represented by its
material properties, geometric characteristic, area Aj, and its coordinate
location (yj, zj) corresponding to its centroid. This way, residual stress is
directly considered in assigning an initial stress value for each fiber. The
second-order effects are included by theuse of several sub-elements per
member through updating of the element stiffness matrix and nodal
coordinates at each iterative step.

To reduce the computational time when assembling the structural
stiffness matrix and solving the system of nonlinear equations, n sub-
elements are condensed into a typical beam-column member with the
six degrees of freedom at the two ends by using the static condensation
algorithm derived by Wilson [20]. A reverse condensation algorithm is
used to find the displacements along the member length for evaluating
the effects of distributed plasticity and the second-order effects. The
Appendix C presents the static condensation procedure in detail.

In the development of the second-order spread-of-plasticity beam-
column element, the following assumptions are made: (1) the element
is initially straight and prismatic; (2) plane cross-sections remain plane
after deformation and normal to the deformed axis of the element;
(3) out-of-plane deformations and the effect of Poisson are neglected;
(4) shear strains are negligible; (5) member deformations are small,
but overall structure displacements may be large; (6) residual stress is
uniformly distributed along the member length; (7) yielding of the
cross-section is governed by normal stress alone; (8) the material
model is linearly strain-hardening elastic–perfectly plastic; and,
(9) local buckling of the fiber elements does not occur. In this study,
an elastic–perfectly plastic stress–strain relationshipwith linearly strain
hardening used by Toma and Chen [21] is adopted as shown in Fig. 4.
Strain hardening starts at the strain of εsh = 10εy, and its modulus Esh
is assumed to be equal to 2% of the elastic modulus E. The total internal
strain energy of a beam-column element can be expressed as follows:

U ¼
Z
V

Z
ε

σdεdV : ð1Þ

The normal stresses corresponding to the strain state of fibers are
calculated as follows:

σ ¼ Eε for elastic fibers
σ ¼ Eεy ¼ σy for yielding fibers
σ ¼ Eεy þ Esh ε−εshð Þ ¼ σ sh for hardening fibers:

ð2Þ

The total internal strain energy of a partially strain-hardening
elastic–plastic beam-column element can be expanded as
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Fig. 1. Beam-column element modeling under arbitrary loads.
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Fig. 2.Meshing of beam-column element into n sub-elements.
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Fig. 3. Illustration of meshing of element cross-section and states of fibers.
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