Contents lists available at ScienceDirect

Respiratory Physiology & Neurobiology

journal homepage: www.elsevier.com/locate/resphysiol

CO₂ pulse and acid-base status during increasing work rate exercise in health and disease

Tomohiko Kisaka^a, Timothy A. Cox^a, Daniel Dumitrescu^{b,a}, Karlman Wasserman^{a,*}

^a Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California at Los Angeles, Torrance, CA 90502 United States
^b Herzzentrum der Universitaetzu Koeln, Klinik III fuer Innere Medizin, Kerpener Str. 62, 50937 Cologne, Germany

ARTICLE INFO

Article history: Received 17 May 2015 Received in revised form 26 June 2015 Accepted 12 July 2015 Available online 28 July 2015

Keywords: Hydrogen ion Buffering Anaerobic threshold Lactic acidosis Cardiopulmonary exercise testing

ABSTRACT

The CO₂ pulse (\dot{V} CO₂/heart rate), analogous to the O₂ pulse (\dot{V} O₂/heart rate), was calculated during cardiopulmonary exercise testing and evaluated in normal and diseased states. Our aim was to define its application in its release in excess of that from \dot{V} CO₂/heart rate in the presence of impaired cardiovascular and lung function. In the current study, forty-five patients were divided into six physiological states: normal, exercise-induced myocardial ischemia, chronic heart failure, pulmonary vasculopathy, chronic obstructive pulmonary disease, and interstitial lung disease. We subtracted the O₂ pulse from the CO₂ pulse to determine the exhaled CO₂ that could be attributed to CO₂ pulse of buffering of lactic acid. The difference between the CO₂ pulse and O₂ pulse (\dot{V} CO₂/heart rate- \dot{V} O₂/heart rate) includes CO₂ generated from HCO₃⁻ buffering of lactic acid. The accumulated CO₂ per body mass was found to be significantly correlated with the corresponding [HCO₃⁻] decrease (R^2 = 0.72; *P* < 0.0001). In summary, the increase in CO₂ pulse over the O₂ pulse accounted for the anaerobically-generated excess-CO₂ in each of the physiological states and correlated with the decreases in the arterial Bicarbonate concentration.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Quantitative gas exchange measurements have been of value for selecting patients for heart transplantation (Guazzi, 2002; Mancini et al., 1991; Stevenson et al., 2008). Additional measurements, such as the anaerobic threshold (*AT*), also referred to as lactic acidosis threshold (LAT), has been of clinical value for identifying patients at high risk of death for major surgery (Grocott and Pearse, 2010; Older et al., 1999). There are various additional clinical applications of the *AT* in different diseases (Rossiter, 2011; Thirapatarapong et al., 2014). During the past 30 years, there have been increased numbers of reports showing that cardiopulmonary exercise testing (CPET) provided valuable information on the severity of graded heart failure (Guazzi et al., 2015; Myers et al., 2008; Sun et al., 2010; Wasserman et al., 2007). Also, CPET has been valuable in grading severity of pulmonary vascular disease (Dumitrescu et al., 2010; Yasunobu et al., 2005). It is also accepted that CPET is a valuable

tool to the non-invasive diagnostic workup of patients with symptoms of exercise intolerance (Georgiopoulou et al., 2012; Ramponi et al., 2013). The concept of the AT was developed approximately 50 years ago when addressing the exercise limitation in patients with heart failure (Wasserman and McIlroy, 1964). This concept was in agreement with findings from other groups (Hollmann, 1985). Gitt et al. (2002) showed that a reduced AT, with an increased ventilatory requirement for CO_2 elimination ($\dot{V}E/\dot{V}CO_2$), were strong predictors of early death (six months) in heart failure patients. Physiological assessments such as reduced O₂ pulse ($\dot{V}O_2/HR$) at peak exercise provide insight into the stroke volume response to exercise. There are critical opinions against the AT concept, stating that lactate does not increase as a threshold function, but increases as an exponential function. To repudiate this point of view, we analyzed the rate of lactate and pyruvate increase and the lactateto-pyruvate ratio in previous studies. Lactate, pyruvate and its ratio increased more clearly as a threshold function than an exponential model (Wasserman et al., 1985; Wasserman and McIlroy, 1964). Further, we showed that the increase in lactate and lactate-topyruvate ratio preceded the increase in pyruvate.

The concentration of arterial bicarbonate ($[HCO_3^-]$) remains relatively constant as work rate increases up to the *AT*. Using a quantitative CPET is especially useful when the cause of exercise intolerance is due to reduced O₂ transport. In order to determine

^{*} Corresponding author at: Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute Harbor–UCLA Medical Center, 1124 West Carson Street, RB2, Box 405 Torrance, CA 90502, United States. Fax: +1 310 328 9849.

E-mail address: kwasserman@labiomed.org (K. Wasserman).

Table 1
Demographics and exercise gas exchange of study population.

Group	N	0	Sex	Height (cm)	Weight (kg)	BMI (kg/m ²)	V̈O ₂ (L/min)			VCO ₂ (L/min)			RER			ŻCO₂/HR − ŻO₂/HR (ml/beat)			V̈E/V̈CO ₂			P _{ET} O ₂ (mm Hg)			P _{ET} CO ₂ (mm Hg)		
			(M/F)				Rest	AT	Peak	Rest	AT	Peak	Rest	AT	Peak	Rest	AT	Peak	Rest	AT	Peak	Rest	AT	Peak	Rest	AT	Peak
Normal																											
Mean	9	46	7/2	168	71	25	0.30	1.17	2.30	0.27	1.03	2.98	0.91	0.87	1.29	-0.3	-1.3	3.7	37	27	32	108	98	118	36	44	37
SD		15		10	15	3	0.06	0.40	0.61	0.08	0.37	0.84	0.17	0.06	0.09	0.6	0.8	1.6	5	3	4	9	9	5	4	4	4
SEM		5		3	5	1	0.02	0.13	0.20	0.03	0.12	0.28	0.06	0.02	0.03	0.2	0.3	0.5	2	1	1	3	3	2	1	1	1
Exercise	e-ind	uced my	ocardial i	schemia																							
Mean	5	63ª	5/0	176	79	26	0.30	1.14	1.71 ^a	0.24	1.03	2.37	0.82	0.90	1.41	-0.7	-0.9	4.0	38	30	37	96	106	123	37	41	35
SD		6		5	12	5	0.09	0.17	0.42	0.08	0.21	0.43	0.12	0.05	0.21	0.5	0.4	1.1	9	3	6	35	12	7	3	3	6
SEM		3		2	5	2	0.04	0.08	0.19	0.03	0.09	0.19	0.06	0.02	0.10	0.2	0.2	0.5	4	1	3	16	5	3	1	2	3
Chronic	hear	t failure																									
Mean	8	57	6/2	168	71	25	0.27	0.79 ^a	1.22 ^b	0.21	0.70 ^a	1.43 ^b	0.78 ^a	0.88	1.16	-0.8	-0.9	1.5 ^b	41	36 ^b	40	108	109 ^a	120	34	35 ^b	32
SD		10		5	11	3	0.05	0.21	0.37	0.04	0.19	0.54	0.08	0.04	0.13	0.4	0.4	1.5	6	6	9	7	8	5	5	6	6
SEM		3		2	4	1	0.02	0.07	0.13	0.01	0.07	0.19	0.03	0.01	0.05	0.2	0.2	0.5	2	2	3	3	3	2	2	2	2
Pulmon	ary v	asculopa	thy																								
Mean	6	57	5/1	172	72	24	0.29	0.84	1.36 ^b	0.24	0.74	1.61 ^b	0.84	0.87	1.20	-0.6	-1.0	1.7 ^b	49 ^b	43 ^b	47 ^b	113	112 ^b	122	29 ^b	32 ^b	30
SD		6		9	13	3	0.02	0.28	0.45	0.04	0.28	0.50	0.14	0.06	0.16	0.6	0.4	1.2	8	5	15	11	6	9	6	5	10
SEM		2		4	5	1	0.01	0.12	0.19	0.02	0.11	0.20	0.06	0.03	0.07	0.2	0.2	0.5	3	2	6	4	2	4	2	2	4
Chronic	obst	ructive p	ulmonar	y disease																							
Mean	9	51	9/0	175	84	27	0.30	0.83 ^a	1.43 ^b	0.26	0.75	1.72 ^b	0.88	0.91	1.20	-0.4	-0.8	2.0 ^b	44 ^a	37 ^b	41 ^a	112	109 ^b	119	33	36 ^b	34
SD		11		4	14	5	0.09	0.20	0.47	0.08	0.15	0.59	0.10	0.09	0.09	0.4	0.9	1.1	6	8	11	8	10	13	5	7	11
SEM		4		1	5	2	0.03	0.07	0.16	0.03	0.05	0.20	0.03	0.03	0.03	0.1	0.3	0.4	2	3	4	3	3	4	2	2	4
Interstit	tial lu	ing disea	se																								
Mean	8	41	5/3	170	67	23	0.27	0.95	1.40 ^b	0.22	0.86	1.70 ^b	0.79	0.92	1.27	-0.7	-0.8	1.9 ^b	41	36 ^b	41 ^a	107	111 ^b	123	35	36 ^a	32
SD		16		12	17	3	0.07	0.51	0.65	0.07	0.42	0.65	0.12	0.07	0.20	0.6	0.9	1.0	6	5	6	7	6	4	4	5	3
SEM		6		4	6	1	0.02	0.18	0.23	0.02	0.15	0.23	0.04	0.02	0.07	0.2	0.3	0.4	2	2	2	2	2	1	1	2	1

BMI, body mass index; RER, respiratory exchange ratio equals $\dot{V}CO_2/\dot{V}O_2$.

^a Difference from normal: P<0.05.
 ^b Difference from normal: P<0.01.

Download English Version:

https://daneshyari.com/en/article/2846825

Download Persian Version:

https://daneshyari.com/article/2846825

Daneshyari.com