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Respiratory-related neurons in the parabrachial-Kélliker-Fuse (PB-KF) region of the pons play a key role in
the control of breathing. The neuronal activities of these pontine respiratory group (PRG) neurons exhibit
a variety of inspiratory (I), expiratory (E), phase spanning and non-respiratory related (NRM) discharge
patterns. Due to the variety of patterns, it can be difficult to classify them into distinct subgroups according
to their discharge contours. This report presents a method that automatically classifies neurons according
to their discharge patterns and derives an average subgroup contour of each class. It is based on the K-
means clustering technique and it is implemented via SigmaPlot User-Defined transform scripts. The
discharge patterns of 135 canine PRG neurons were classified into seven distinct subgroups. Additional
methods for choosing the optimal number of clusters are described. Analysis of the results suggests
that the K-means clustering method offers a robust objective means of both automatically categorizing
neuron patterns and establishing the underlying archetypical contours of subtypes based on the discharge
patterns of group of neurons.

Published by Elsevier B.V.

1. Introduction

Respiratory-related neurons in the parabrachial-Kélliker-Fuse
(PB-KF) region of the pons play a key role in the control of phase
timing and breathing frequency (Alheid et al., 2004; Cohen, 1971;
Dutschmann and Dick, 2012; Prkic et al., 2012; St-John, 1998).
The neuronal activities of these pontine respiratory group (PRG)
neurons exhibit a variety of discharge patterns, including inspira-
tory (I), expiratory (E) and phase spanning patterns (Segers et al.,
2008; Song et al., 2006; Ezure and Tanaka, 2006). Also found in
this region are non-respiratory related (NRM) neurons, which show
tonic activity patterns (Segers et al., 2008). Due to the variety of
patterns, it can be difficult to classify them into distinct subgroups
according to their discharge contours. The purpose of this report is
to present a method that automatically classifies neurons accord-
ing to their discharge patterns and derives an average subgroup
contour of each class. It is based on the K-means clustering tech-
nique (Aravind et al., 2010) and it is implemented via SigmaPlot
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User-Defined transform scripts (SigmaPlot 11.0, Systat Software,
Inc. San Jose, CA). In general, clustering involves grouping data
into categories based on some measure of inherent similarity or
distance.

2. Methods

The discharge patterns of 135 PRG neurons obtained from
recordings in a decerebrated dog model (n=12 preparations) were
used to develop a method to automatically classify discharge
patterns according to their contours. The data were recorded
from vagotomized dogs ventilated with an air-O, mixture and
maintained in hyperoxic isocapnia (Fjp > 0.6, end-tidal CO, range
40-50 mmHg). Extracellular spike activity was recorded from the
PB-KF region using a 16-electrode NeuroNexus probe. The elec-
trodes were linearly arranged with an inter-electrode spacing of
100 wm. The spikes were sorted using Cambridge Electronic Design
(CED) Spike2, version 7 software. Timing pulses triggered at the
upstroke and post-peak downstroke of the phrenic neurogram
were used to create cycle-triggered histograms (CTHs) with 50 or
100 ms bins. The CTHs are expressed in terms of percent of peak dis-
charge frequency (Fn), since the emphasis is on the contour of the
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Fig.1. Two examplesillustrating data preparation for the clustering procedure. Panel A: spike activity (CED Spike2 wavemark signals) and corresponding rate meter recordings
of an I (upper) and E (lower) PRG neuron. Panel B: Corresponding CTHs and time-averaged phrenic neurogram (PNG-bar; 31 cycles). Dots: 5 temporally equidistant values
during I-phase and 5 during the E-phase are selected for each vector representation of neuronal pattern. Time zones are indicated by the vertical dashed and dotted lines.

See text for more details.

discharge pattern rather than absolute discharge frequency (ampli-
tude). For each CTH, the I and E phases were each divided into 5
equal zones from which the average discharge frequency (Fn) was
computed, yielding 10 data points (see Fig. 1). Using these data
points, each CTH can be represented by a 10-dimensional vector:
X= [X1, X2, ...Xq0]- These 135 vectors (N=135 neurons) formed
the data set that was then subjected to subgroup assignment (clus-
tering) using a modified K-means method (e.g., Aravind etal., 2010).
In preliminary analyses, vector lengths of 8, 12, and 16 were also
examined to gain insight into the optimal vector length for best
discrimination.

2.1. K-means method

For each cluster (subgroup), an initial pattern (10D vector) is
required as the starting point of an iterative procedure. A repre-
sentative or typical example of a commonly occurring pattern from
the data set was selected for each cluster. It is important that each
selected pattern is visibly different from the other patterns, other-
wise two or more clusters will overlap. In this report seven clusters
were designated based on initial patterns such as augmenting and
decrementing I and E, IE-El-phase spanning, and NRM. To deter-
mine if an optimal number of clusters was obtained, the data were
further examined using a relative distance matrix and a plot (F(k)
vs. k) related to the contribution each additional cluster makes to
the reduction in overall statistical variance of the data set, adapted
from the analysis of Pham et al. (2004) (see Results 3.3).

The next step is to compare each member (neuronal 10-D vec-
tor) of the data set, one at a time, to each of the seven selected 10D

\
cluster patterns, C; = [Cjy, Gy, ...Gj1o] for j=1-7 and deter-
mine which cluster, j, is the closest in terms of vector distance.
Specifically, the Euclidean distance (D) is calculated (Eq. (1)).

Dy = /106 — G+ (%2 — G) + .. (K10 — Gro)P )

where j=1 to 7 is the cluster number and X; and C; are corre-
sponding vector components of the data-set member vector and
the cluster centroid vector (see below for definition of centroid),
respectively. The data vector with the shortest distance to a given
cluster is assigned to that cluster and the shortest distance is saved
and used to calculate the overall iteration error of the complete
data set. This procedure is repeated for each member of the data
set, in this case N=135. The overall error is the average value of the
minimum distances for all N neurons. The next step is to update
the C; values of each cluster. This is done via averaging the data-set
member vectors that belong to each cluster (Eq. (2)).

Nj

G=x2% (2)

Z| =
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Where N; is the number of the neuron patterns associated with
the j-th cluster. The updated averaged cluster vector is also referred
to as the centroid. The above procedure is repeated with the updated
centroid vectors and the overall minimum error is noted. Typically
less than 10 iterations were required for convergence. Appendix A
gives the details of the implementation of the procedure using the
SigmaPlot application software.

2.2. Weighting of 10 D-vector to reduce effects of outliers on
centroid

As a refinement to the clustering method, we have found that
applying weighting factors to each of the neuron vectors assigned
to a given cluster can reduce the overall error. This process assigns
less weight to those vectors that are furthest away from the cen-
troid, such that the shape of the centroid is not distorted by an
“outlier” vector. A weighting scheme that works well is a decaying
exponential of the form:

Wj = eXp[—Ol(Dj - Dmin)/(Dmax - Dmin)] (3)
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