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In this paper, the flexural-torsional buckling and free vibration of tapered thin-walled beam-columns with
arbitrary cross-section shape are extensively investigated. The governing equilibrium equations and motion
equations are obtained from the stationary condition of the potential energy. The strain energy is derived in
presence of initial stresses. In thework of the applied forces, effects of load eccentricities from shear and centroid
centerlines are taken into account. Free vibration is considered inpresence of harmonic excitations. In presence of
arbitrary boundary conditions and variable cross-section properties, a semi-analytical approach based on power
series method is adopted in solution. According to this method, displacements and geometric constants are ap-
proximated by polynomial functions up to a certain order, where accurate results are reached. The flexural-
torsional buckling loads or natural frequencies are determined by solving an eigenvalue problem. In order to
measure the accuracy and to check the validity of the present method, several examples including flexural-
torsional behavior and free vibration analysis of non-prismatic thin-walled members with web and flange
tapering and various boundary conditions are considered. The obtained results are compared to the finite
element simulations and other available solutions.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The use of thin-walled beams with I, Z, C and Angle cross sections has
been increasing in many steel construction and mechanical components
due to their ability to utilize structural material more efficiently and opti-
mize the distribution of weight. Flexural-torsional stability and vibration
analyses are important topics in the design of these structures and re-
search of accurate models has interested many researchers over the
world from the last mid century until now. Moreover, prediction of the
buckling loads and vibration modes of thin-walled beams with arbitrary
cross-section is complex due to flexural-torsional coupling and warping
presence. The task seems to be more complicated in presence of tapered
thin-walled elementswhere the cross-sectionproperties are not constant.

Since the early works of Timoshenko and Vlasov [1,2], the extensive
investigations in static and dynamic behavior of thin-walled beam
members have noticeably increased their understanding. In [3,4], the
buckling loads of prismatic beams are evaluated either by closed-form
solutions of the fourth-order differential equations governing the twist-
ing and the bending equilibrium or by using of complementary energy
principle. Different numerical procedures, mainly based on the finite el-
ement method, have been developed for the stability and vibration
analyses of prismatic thin-walled beams with singly symmetric or

arbitrary cross-section shapes [5–18]. Based on the classical variational
principle and the theory for thin-walled shells, Zhang [5] provided a
model for the flexural-torsional buckling of thin-walled members
under simply supported boundary conditions using shell elements.
The previous model has been recently extended to cantilever beams
[6]. Erkmen [7,8] developed a finite element model for the buckling
analysis of thin-walled members based on principle of stationary com-
plementary energy and Koiter's polar decomposition theory. Wu and
Mohareb [9,10] derived theoretical and finite element models for buck-
ling analysis of shear deformable beam-column elements with doubly
symmetric I cross sections. Effects of load positions relative to the
shear and centroid centerlines are incorporated. The exact dynamic
stiffness matrix of straight members are derived by Leung [11], using
power series expansion. General distributed axial forces are considered
and the interaction diagrams due to vibration frequency, axial force and
torque are studied. Kim [12,13] proposed an improved numerical meth-
od, based Vlasov's assumption and Hellinger–Reissner principle and
derive static and dynamic stiffness matrices for the lateral-torsional
buckling and vibration analyses of thin-walled beam with non-
symmetric section subjected to linear variable axial force. Numerical
solutions are made possible by adoption of the power series method.
Jun [14] derived the dynamic transfer matrix for a straight uniform
and axially loaded thin-walled Bernoulli–Euler beam element and
used it in calculation of exact natural frequencies and mode shapes of
the non-symmetrical thin-walled beams. Borbon [15] developed a
coupled torsional-flexural finite element for vibration analysis thin-
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walled beamwith non-symmetric cross-section including the effects of
rotatory inertia, shear deformation and eccentric axial load. Previous
studies were developed for linear stability context. Based on non-
linear model, Mohri [16] developed a finite element approach for open
section beams in large torsion context. In [17], the 3-factor formula
used in the lateral buckling stability is discussed and extended to
cross-sectionswith largeflangeswhere pre-bucklingdeflections are im-
portant. Based on the previous model, buckling and free vibration
interaction were studied in Mohri [18].

Mentioned studies were focused on the stability and vibration anal-
yses of prismatic thin-walled beams. However, in the last decades, thin-
walled beams with variable cross-sections are extensively adopted in
different steel constructions. Therefore, their vibration and stability
analyses gained more attention by many authors. The investigations of
elastic flexural-torsional buckling and vibration modes of tapered
thin-walledwith the use of efficient numerical techniques such as finite
element method in the validation process have attracted many re-
searchers. Among the first investigations on this topic, the most impor-
tant ones are the studies of Yang [19] who formulated a finite element
model for the beam that takes into account the effect of non-uniform
torsion. The effect of geometric non-linearity is considered and the up-
dated Lagrangian approach is adopted in solution. Pasquino [20] used a
variational approach to derive the Euler–Lagrange equations to model
non-prismatic thin-walled beams with arbitrary cross-section and
evaluate their buckling loads. More recently, Kim [21] investigated the
linear stability and free vibration behavior of doubly symmetric I ta-
pered thin-walled beams by a finite element approach. A theoretical
model for large torsion context and equivalent beam finite element for-
mulation in finite torsion amplitudes were developed by Ronagh
[22,23]. Effects of non-linear terms like flexural-torsional coupling in
presence of cubic terms of torsion angle were considered and applied
to the case of doubly symmetric tapered cross-sections. Chen [24]
applied Hamilton's principle to the potential energy and obtained the
motion equations governing of non-prismatic thin-walled beams with
arbitrary cross-sections. An equilibrium differential equation consider-
ing both the effects of shear deformation and constant axial force of
tapered beams was established by Li [25]. Chebyshev polynomial
approachwas adopted in solution of the second-order differential equa-
tion with variable coefficients. Recently, Yau [26] determined the linear
elastic and geometric stiffness matrices of a torsionally loaded I-beam
element with tapered cross-section by considering the non-uniform
torsions and the second-order effects of warping moments. A general
variational formulation to analyze the lateral-torsional buckling behav-
ior of singly symmetric cross-section tapered beams was presented by
Andrade [27,28]. In the study, Rayleigh–Ritz method is applied in the
case of simply supported and cantilever beams and comparisons to
shell elements are made in the validation process.

Most of previous works devoted to non-prismatic beams have been
limited to either doubly symmetric or singly symmetric cross-sections
in both buckling and vibration analyses. In Asgarian [34], the lateral-
torsional behavior of tapered beams with singly symmetric I cross-
sections was studied. The equilibrium equations were discretized by
the power series expansions method. The previous work is extended
to include eccentrically axial forces and dynamic loads for beams with
non-symmetric cross-sections and arbitrary boundary conditions. Load
positions on the cross section contour are taken into consideration.
For this purpose, the equations of motion are derived from the energy
principle of the thin-walled beam subjected to bending and axial
loads. In presence of non-prismatic thin-walled beam-columns with ar-
bitrary cross-sections, the flexural-torsional displacements and section
properties are highly dependent on the axial coordinate. In order to
make the solution of the problem possible, the power series expansions
are used to solve the fourth-order differential equations ofmotion of the
non-prismatic thin-walled beam. In this regard, it is assumed that the
functions which describe the member's variable parameters such
as: flexural rigidity, cross-section area and density can be expanded

into power series form. Based on the aforementioned method, the ex-
pressions of the bending displacements and the torsion angle are also
presented into power series form. The critical buckling loads and natural
frequencies can be obtained by imposing the natural boundary condi-
tions corresponding to thin-walled members under combined effect of
bending and torsion and solving the eigenvalue problem.

In order to demonstrate the accuracy and efficiency of this method,
some numerical examples are presented. The obtained results are
compared to shell finite element results using Ansys software and to
other available numerical and analytical investigations. The proposed
study can be applied for stability and free vibration analyses of various
forms of non-prismatic thin-walled members. The proposed method
can be used for the buckling and free vibration analyses of uniform
beams as well as non-uniform members.

2. Derivation of equilibrium andmotion equations for buckling and
free vibration

2.1. Kinematics

A tapered thin-walled columnwith arbitrary cross-section is consid-
ered in the study (Fig. 1a). The length L of the thin-walled beam is larger
compared to the cross-section dimensions. A direct rectangular
co-ordinate system is chosen, with x as the initial longitudinal axis
and y and z as the first and second main bending axes. The origin
of these axes is located at the centroid O. The shear center with
co-ordinates (yc, zc) in xyz is denoted in C (Fig. 1b). For flexural torsional
buckling stability, the member is subjected to arbitrary distributed
forces px, py and pz in structural domain in x, y and z directions respec-
tively. Displacement components of point M on the section contour
can be expressed in terms of those of origin O. Displacement compo-
nents are denoted by U, V and W. The torsion angle is denoted by θ.
The following relationships are commonly used:

U x; y; z; tð Þ ¼ u0 x; tð Þ− y
∂v0 x; tð Þ

∂x − z
∂w0 x; tð Þ

∂x −ϕ y; zð Þ ∂θ x; tð Þ
∂x ð1Þ

V x; y; z; tð Þ ¼ v0 x; tð Þ− zθ x; tð Þ ð2Þ

W x; y; z; tð Þ ¼ w0 x; tð Þ þ yθ x; tð Þ ð3Þ

In which U represents the axial displacement. The displacement
components V and W represent lateral and vertical displacements (in
y and z directions). In Eq. (1), the term ϕ(y,z) is the warping function,
which can be defined based on Saint Venant's torsion theory. The two
components of vertical and lateral displacement at the centroid can be
replaced by the displacements at the shear center C as follows:

v0 x; tð Þ ¼ v x; tð Þ þ zc xð Þθ x; tð Þ ð4Þ

w0 x; tð Þ ¼ w x; tð Þ− yc xð Þθ x; tð Þ: ð5Þ

TheGreen's strain tensor componentswhich incorporate the largedis-
placements and including linear and non-linear strain part are given by:

εij ¼
1
2

∂Ui

∂xj
þ ∂U j

∂xi

 !
þ 1
2

∂Uk

∂xi
∂Uk

∂xj

 !
¼ εlij þ ε�ij ð6aÞ

where i, j, k = x, y, z
εijl denotes the linear part and εij⁎ denotes the quadratic non-linear

part. Substituting Eqs. (4) and (5) into Eqs. (1)-(3), using Green strain
tensor Eq. (6a) and taking into account for tapering, the linear strain
components for the thin-walled beam can be obtained as:

εlxx ¼ u0
′−y v″þ zcθ″þ zc″θþ 2zc′θ′

� �
−z w″−ycθ″−yc″θ−2yc′θ′
� �

−ϕθ″

ð6bÞ
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