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In contrast to the classical Engesser method of solving the buckling problem for laced columns in terms of an
“equivalent” solid bar, the buckling problemof a columnwith afir-shaped lattice is formulated as a stability prob-
lem of a statically indeterminate system of elastic bars. Solving this problem by conventional methods consists of
the determination of a smallest eigenvalue for the linear algebraic system of a high order which depends upon
the number of the column joints. The present approach requires analyzing only the fourth-order system for col-
umns with any degree of static indeterminacy. The stability analysis is reduced to numerical solution of a two-
point boundary value problem for a system of recurrence relations between deformation parameters of column
cross-sections passing through the column joints. The critical force and themodified slenderness ratio for column
with any number of panels and thefixed inclination of lattice diagonals are represented as a function of the lattice
rigidity parameter. The obtained values of Euler's critical force are essentially higher than those obtained with
Engesser's model. The distinctive feature which is similar to the Boobnov phenomenon occurs for the column
with a fir-shaped lattice: the column loses stability so that joint cross-sections are not displaced and the chord
panels are buckled as a simply-supported bar. This type of buckling is possible when the lattice rigidity exceeds
a specific limit. The plots of the modified slenderness ratio as a function of the lattice rigidity can be applied in
designing steel-laced columns with a fir-shaped lattice.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

According to design codes the nominal compressive strength of steel
columns is determined by using column strength curves developed on
the concept of the limit state offlexural buckling. The equations describ-
ing the strength curves depend on the ratio between the yield stress of
the column material and the elastic buckling stress [1]. So the problem
of elastic buckling is a significant point in determining the strength of
metal columns.

The laced columnswith a fir-shaped lattice are the highly redundant
structures. In design practice, determination of the Euler critical load for
such columns in the direction parallel to the lattices [2–5] is based on
the Engesser's hypothesis which reduces the problem to calculation of
Euler's critical load for the “equivalent” solid pin-ended barwhile the ef-
fect of shear deformation on the bar deflections is taken into account
[6,7]. An extension of the Engesser's method proposed in [8,9] is based
on the assumption that the transverse displacement of the column
chords is the same and that the column lattices behave as a shear
panel continuously connected to the chords. To achieve amore satisfac-
tory value of critical load, an application of the general theory of stability
of a system of elastic bars is necessary [7]. The critical load for a laced
column is found by equating to zero the determinant of the system of
homogeneous linear equations representing the equilibrium conditions
of the column joints in a slightly deflected state. The determinant can be

of high order since it depends upon the number of the column joints.
However, a buckling problem for a laced column with any number of
panels can be formulated as a two-point boundary value problem for
the eighth-order system of recurrence relations between deformation
parameters of column cross-sections passing through the column joints.
These relations result from formulas of the initial-value method for the
centrally compressed solid elastic bar. A determination of the critical
force and bucklingmode shape is reduced to finding the smallest eigen-
value for the fourth-order system of linear algebraic equations. Rigidity
properties of thefir-shaped lattice are described by rigidities of diagonal
and brace. The Euler's critical force of the column can be represented as
a function of the lattice rigidity parameter and the number of the col-
umn panels. The present method has been previously used for solving
the stability problem of laced columns with serpentine and crosswise
lattices [10–12] and built-up columns with batten plates [13].

2. Initial-value method

The deflectionw of an elastic straight bar subjected to an axial com-
pression by the force P in the critical state is described by the well-
known differential equation

EIwIV þ PwII ¼ 0 ð1Þ

where E is Young'smodulus and I is the secondmoment of inertia of the
cross-sectional area [7]. The roman superscripts denote a differentiation
with respect to the axial longitudinal coordinate z. The bendingmoment
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M and the transverse force Q directed normally to the bar axis in the
initial unstressed state are expressed as follows:

M ¼ −EIwII ð2Þ

Q ¼ −EIwIII−PwI
: ð3Þ

A solution of Eq. (1) can be expressed in terms of initial values of
deflection w and its derivatives by using the initial-value method
which makes possible to represent w, wI, M and Q in the following
form [14]:

w ¼ w0 þ wI
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where ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P= EIð Þp

and w0, (wI)0, M0 and Q0 are initial values of de-
flection, its derivative, bending moment and transverse force,
respectively.

3. Reactions of diagonals and braces at the lattice joints

Consider a laced column, which consists of two longitudinal solid
chords 1 and 2 connected by two mutually parallel fir-shaped lat-
tices in one (Fig. 1). The column cross-section is symmetric about
the axis parallel to the lattice planes. In actual practice, the fir-
shaped lattice is one of the most frequently employed lattice types.
The lattice consists of the ascending diagonals that start at the joints
located on the left chord and of horizontal braces. The lattice joints
make up hinges in the lattice plane. We shall distinguish identical
quantities corresponding to the different chords by means of sub-
scripts i = 1, 2. Each chord is compressed by an axial force Pi. Intro-
duce an ordinal numeration k = 0, 1, 2,…, n for joint cross-sections
of each chord, where n is the number of column panels. A length of
panel can vary along the column. However, we have denoted the
panel length as a.

Associate a local Cartesian coordinate system with each chord. It
is formed by the principal axis of inertia OiY of the cross-section
and by the longitudinal axis OiZ. We use the symbol z for the coordi-
nate along the axis OiZ. The joints located on the different chords dif-
fer in construction. We assume that the joint cross-section of the left
chord is located between the horizontal brace and the diagonal that
ascends from the joint, and the joint cross-section of the right
chord is located between the diagonal that arrives at the joint and
the horizontal brace (Fig. 2). However, the values of z-coordinate
for the joint cross-sections k of both chords are taken to be the same

z1 kð Þ ¼ z2 kð Þ ¼ zk: ð5Þ

We denote the transverse displacement, its derivative, and the
bendingmoment for the joint cross-section k of the ith chord as follows:

yi kð Þ ¼ yi zkð Þ; yiI kð Þ ¼ yi
I zkð Þ;Mi kð Þ ¼ Mi zkð Þ: ð6Þ

Notation

A cross-sectional area of the column chord
Ab cross-sectional area of the horizontal lattice brace
Ad cross-sectional area of the lattice diagonal
a length of the chord panel (Fig. 1)
cb rigidity of the horizontal lattice brace
cd rigidity of the lattice diagonal in the direction normal to

the column chords
E Young's modulus
I second moment of inertia of the cross-section
i number of the column chord, i = 1, 2
k number of the joint cross section of the column, k = 0,

1, 2,…, n
M bending moment
Mi(k) bending moment at the joint cross section k of the ith

chord
Na Euler's critical force for a simply-supported bar geomet-

rically similar with the chord panel
n number of panels in the column chord
Pcr Euler's critical value of the axial compressed force P ap-

plied to the column chord
Q transverse force
Qi(k) transverse force at the joint cross section k of the ith

chord
Qi(k, ↑) transverse force at the cross section with coordinate

z = zk + 0 of the ith chord
Qi(k, ↓) transverse force at the cross section with coordinate

z = zk − 0 of the ith chord
Rib(k) lateral force applied to the joint cross section k of the ith

chord from the horizontal lattice braces
Rid(k) lateral force applied to the joint cross section k of the ith

chord from the lattice diagonals
V vector of deformation parameters in the system of re-

currence equations
Vj(k) particular solution of recurrence equations at the joint

cross section k, j = 1, 2, 3, 4eV j kð Þ orthonormalized vector of deformation parameters at
the joint cross section k, j = 1, 2, 3, 4

w transverse displacement of the compressed elastic bar
yi(k) transverse displacement of the joint cross section k of

the ith chord
z coordinate along the axis Oi Z (Fig. 1)
zk z-coordinate for the joint cross sections k of both chords
αd non-dimensional rigidity parameter of the lattice

diagonal
αb non-dimensional rigidity parameter of the horizontal

lattice brace
αB magnitude of the parameter αd which gives rise to the

Boobnov phenomenon
Γ i ¼ Mia

EIi
non-dimensional bending moment at the chord cross
section

Λ i ¼ Qia2
EIi

non-dimensional transverse force at the chord cross
section

φ inclination angle of the lattice diagonal to the column
cross-section (Fig. 1)

λa slenderness ratio of the chord panel
λm modified slenderness ratio of the laced column
ν ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

P= EIð Þp
coefficient of the action of compressive force P on

the bar deflection
υ inclination of the chord cross section in the deformed

state
ξi ¼ yi

a non-dimensional transverse displacement of the chord
cross section

Ωi ¼
ffiffiffiffi
Pi
EIi

q
a non-dimensional parameter of the compressive force
Pi
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