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In this study, the feasibility of using evolutionary computing formodelling ultimate pure bending of steel circular
tubes was investigated. The behaviour of steel circular tubes under pure bending is complex and highly non-
linear, and the literature has a number of solutions, most of which are difficult to use in routine design practice
as they do not provide a closed-form solution. This work presents a new approach, based on evolutionary poly-
nomial regression (EPR), for developing a simple and easy-to-use formula for prediction of ultimate pure bending
of steel circular tubes. The EPR model was calibrated and verified using a large database that was obtained from
the literature and comprises a series of 104 pure bending tests conducted on fabricated and cold-formed tubes.
The predicted ultimate pure bending of steel circular tubes using this model can be obtained from a number of
inputs including the tube thickness, tube diameter, steel yield strength and modulus of elasticity of steel. A
sensitivity analysis was carried out on the developed EPR model to investigate the model generalisation ability
(or robustness) and relative importance of model inputs to its output. Predictions from the EPR model were
compared with those obtained from artificial neural network (ANN) models previously developed by the
authors, as well as most available codes and standards. The results indicate that the EPR model is capable of
predicting the ultimate pure bending of steel circular tubes with a high degree of accuracy and outperforms
most available codes and standards. The results also indicate that the performance of the EPR model agrees
well with that of the previously developed ANN models. It was also shown that the EPR model was able to
learn the complex relationship between the ultimate pure bending and most influencing factors, and render
this knowledge in the form of a simple and transparent function that can be readily used by practising engineers.
The advantages of the proposed EPR technique over the ANN approach were also addressed.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Circular hollow steel tubes have good energy absorption characteris-
tics under pure bending, thus, have been used in several large-scale engi-
neering applications such as offshore pipelines and platforms; chemical
and nuclear power plants; and land-based pipelines. The deformation of
circular tubes under bending exhibits significant changes to their cross
section profile along the tube length throughwhat is known as ovalisation
[1,2]. This phenomenon is highly non-linear and makes the behaviour of
circular tubes under pure bending very complex. An accurate prediction
of the ultimate capacity of steel circular tubes under pure bending using
the conventional analytical solutions requires rigorous mathematical

procedures that are difficult to achieve from the pragmatic point of
view. Most available methods for predicting the ultimate pure bending
of circular tubes [3–7] incorporate several assumptions to simplify the
problem and to make it amenable to a solution, which in turn, affect the
prediction accuracy. In this respect, artificial intelligence (AI) techniques
such as artificial neural networks (ANNs) and evolutionary polynomial
regression (EPR) are more efficient, as they do not need incorporation
of any assumptions or simplifications. Unlike most available statistical
methods, AI techniques do not need predefined mathematical equations
of the relationship between the model inputs and corresponding outputs
and rather mainly use the data to determine the structure of the model
and unknown model parameters, enabling the limitations of most
existing modelling techniques to be overcome.

In a previous paper by the authors published at the same journal [8],
ANNs were successfully used to develop ANN-based models for
predicting the ultimate pure bending of steel circular tubes. However,
ANNs have the advantage that the obtained network structure is usually
complex as the acquired knowledge is represented in the formof a set of
weights and biases that are difficult to interpret; thus, ANNs are always
criticised of being black boxes [9]. Due to their lack of ability to provide
insights of how model inputs affect outputs, ANNs neither consider
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nor explicitly explain the underlying physical processes of the problem
at hand. Consequently, ANNs usually fail to give a transparent function
that relates the inputs to outputs, making it difficult to understand the
nature of the input–output relationships that are derived [10]. The
main objective of the current work is to explore the feasibility of
utilising a relatively new AI technique, i.e. evolutionary polynomial re-
gression (EPR), for developing an accurate, simple and transparent
model for prediction of the ultimate pure bending of steel circular
tubes. The predictive ability of the developed EPR model was examined
by comparing its results with experimental data, andwith those obtain-
ed from the ANNmodels previously developed by the authors aswell as
most available codes and standards.

Despite the fact that the EPR is similar to ANNs in the sense that both
techniques are based on observed data (i.e. data driven approaches);
however, unlike ANNs, EPR can return a simple mathematical structure
that is symbolic and usually uncomplicated [11]. The nature of the ob-
tained EPR models permits global exploration of expressions, which
provides insights into the relationship between the model inputs and
corresponding outputs, i.e. allows the user to gain additional knowledge
of how the system performs. An additional advantage of EPR over ANNs
is that the structure and network parameters of ANNs (e.g. number of
hidden layers and their number of nodes, transfer functions, learning
rate, etc.) should be identified a priori and are usually obtained using
ad hoc, trial-and-error approaches. However, the number and combina-
tion of terms, as well as the values of EPR modelling parameters, are all
evolved automatically during model calibration. At the same time, the
prior physical knowledge based on engineering judgement or human
expert can be incorporated into EPR to make hypotheses on the
elements of the objective functions and their structure, enabling refine-
ment of the final models.

2. Overview of evolutionary polynomial regression

Evolutionary polynomial regression (EPR) is a hybrid regression tech-
nique that is based on evolutionary computing developed by Giustolisi
and Savic [12]. In recent years, EPR has been applied successfully to
some problems in civil engineering [e.g. 9,13,14] and have shown high
potential. It constructs symbolic models by integrating the soundest fea-
tures of numerical regression, with genetic programming and symbolic
regression [15]. The following two steps roughly describe the underlying
features of the EPR technique, aimed to search for polynomial structures
representing a system. In the first step, the selection of exponents for
polynomial expressions is carried out, employing an evolutionary
searching strategy by means of genetic algorithms [16]. In the second
step, numerical regression using the least square method is conducted,
aiming to compute the coefficients of the previously selected polynomial
terms. The general form of expression in EPR can be presented as follows
[12]:

y ¼
Xm
j¼i

F X; f Xð Þ; aj

� �
þ ao ð1Þ

where: y is the estimated vector of output of the process;m is the number
of terms of the target expression; F is a function constructed by the
process; X is the matrix of input variables; f is a function defined by the
user; and aj is a constant. A typical example of EPR pseudo-polynomial
expression that belongs to the class of Eq. (1) is as follows [12]:

Ŷ ¼ ao þ
Xm
j¼i

a j: Xið ÞES j;1ð Þ
::::: Xkð ÞES j;kð Þ

: f Xið ÞES j;kþ1ð Þ
::::: Xkð ÞES j;2kð Þh i

ð2Þ

where: Ŷ is the vector of target values;m is the length of the expression; aj
is the value of the constants; Xi is the vector(s) of the k candidate inputs;
ES is the matrix of exponents; and f is a function selected by the user.

EPR is suitable for modelling physical phenomena, based on two
features [17]: (i) the introduction of prior knowledge about the physical
system/process — to be modelled at three different times, namely be-
fore, during and after EPRmodelling calibration; and (ii) the production
of symbolic formulas, enabling data mining to discover patterns which
describe the desired parameters. In the first EPR feature (i) above, be-
fore the construction of the EPRmodel, themodeller selects the relevant
inputs and arranges them in a suitable format according to their
physicalmeaning. During the EPRmodel construction,model structures
are determined by following some user-defined settings such as general
polynomial structure, user-defined function types (e.g. natural
logarithms, exponentials, tangential hyperbolics) and searching strate-
gy parameters. The EPR starts from true polynomials and also allows
for the development of non-polynomial expressions containing user-
defined functions (e.g. natural logarithms). After EPRmodel calibration,
an optimum model can be selected from among the series of models
returned. The optimum model is selected based on the modeller's
judgement, in addition to statistical performance indicators, namely
the coefficient of determination. A typical flow diagram of the EPR pro-
cedure is shown in Fig. 1 [18], and detailed description of the technique
can be found in Giustolisi and Savic [12].

3. Development of EPR model

In this work, the EPR model was developed using the computer-
based software package EPR TOOLBOX Version 2.0 [19]. The following
steps were used for model development.

3.1. Model inputs and outputs

Four variables were presented to the EPR as model inputs including
the tube thickness, t, tube diameter, d, steel yield strength, fy, and
modulus of elasticity of steel, E. The single model output is the ultimate
pure bending, Mu.

3.2. Data division and pre-processing

The data used to calibrate and validate the EPRmodel were obtained
from the literature and include a series of 104 ultimate pure bending
tests, 49 tests were conducted on fabricated steel circular tubes and 55
tests on cold-formed tubes. The 49 tests of fabricated tubes comprise a
number of 27 tests reported by Sherman [2,20], 10 tests by Schilling
[21], 4 tests by Jirsa et al. [22] and 8 tests by Korol and Huboda [23].
The 55 tests of cold-formed tubes were reported by Elchalakani et al.
[24–27]. Details of the data used were previously published in Shahin
and Elchalakani [8].

The available data were randomly divided into two sets: a training
set for model calibration and an independent validation set for model
verification. As recommended by Masters [28] and Shahin et al. [29],
the data were divided into their sets in such a way that they are statis-
tically consistent and thus represent the same statistical population.
The statistics of the data used in the training and validation sets are
given in Table 1,which include themean, standarddeviation,minimum,
maximumand range. In total, 80% of the data (i.e. 84 records)were used
for model training and 20% (i.e. 20 records) for validation. It should be
noted that, like all empirical models, EPR performs best when they do
not extrapolate beyond the range of the data used for model training;
consequently the extreme values of the available data were included
in the training set, as shown in Table 1.

3.3. Model optimization

Following the data division, theywere presented to the EPR formodel
training and a set of internal model parameters were tried in an attempt
to arrive at an optimalmodel, by selecting the related internal parameters
for evolving the model. The optimization phase was undertaken as

85M.A. Shahin, M.F. Elchalakani / Journal of Constructional Steel Research 94 (2014) 84–90



Download English Version:

https://daneshyari.com/en/article/284755

Download Persian Version:

https://daneshyari.com/article/284755

Daneshyari.com

https://daneshyari.com/en/article/284755
https://daneshyari.com/article/284755
https://daneshyari.com

