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This paper presents a simple effective numerical procedure based on the beam–column method for nonlinear
elastic dynamic analysis of three-dimensional semi-rigid steel frames. The geometric nonlinearity is consid-
ered by using stability functions and geometric stiffness matrix. An independent zero-length connection
element comprising six translational and rotational springs is used to simulate the steel beam-to-column
connection. The dynamic behavior of rotational springs is captured through the independent hardening
model. The Newmark numerical integration method combined with the Newton–Raphson iterative algo-
rithm is adopted to solve the nonlinear equations. The nonlinear elastic dynamic analysis results are com-
pared with those of previous studies and commercial SAP2000 software to verify the accuracy and
efficiency of the proposed analysis.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Beam-to-column joints of steel frames are usually assumed to be
rigid or pinned connections in structural design. This assumption
causes an inaccurate estimation of the response of frames since real
beam-to-column joints are between fully rigid and pinned connec-
tions. A variety of static experiments have been carried out to investi-
gate the nonlinear behavior of semi-rigid connections [1–3]. Several
dynamic tests have also been performed to investigate the energy
dissipation which is one of the important features of semi-rigid con-
nections under cyclic loadings [3–6].

Several mathematic models for semi-rigid connections were pro-
posed for representing moment–rotation relationship curves, these
models can be grouped into two categories: linear semi-rigid connec-
tion models and nonlinear semi-rigid connection models. In linear
semi-rigid connection models, the stiffness of connections is assumed
to be constant and stiffness matrix of a beam–columnmember is usu-
ally modified by using end-fixity factors [7,8]. The advantage of these
models is simple in formulation and implementation. However, these
models do not consider the nonlinear behavior of semi-rigid connec-
tions, and furthermore they ignore the energy dissipation at connec-
tions. In nonlinear semi-rigid connectionmodels [9–12], the stiffness of
connections varies corresponding to different loading magnitudes and
therefore these models can accurately capture the moment–rotation
relationship as well as consider the energy dissipation.

In the last two decades, nonlinear dynamic behavior of plane
frames with semi-rigid connections is extensively investigated but
space frames with semi-rigid connections are rarely concerned. Re-
cently da Silva et al. [13] successfully developed a modeling strategy
to represent the dynamic behavior of semi-rigid joints by using the
ANSYS finite element software. This analysis method employed
approximate shape functions, hence, if beam–column members are
divided into a lot of elements, the second-order effects will be pre-
dicted more exactly so that it consumes computational time and com-
puter resources intensively. An another method is the beam–column
approach using stability functions derived from the closed-form
solutions of the differential equation of the beam–column element
subjected to the end forces and therefore it is able to evaluate the
second-order effects exactly by using only one element per member.
It can be seen that the beam–column approach using stability func-
tions saves computer resources and it reduces computational time.

By using stability functions, Lui and Lopes [14] and Awkar and Lui
[15] carried out an investigation on the dynamic behavior of plane
steel frames, in which the moment–rotation curves of semi-rigid con-
nections were represented by the bilinear model, which do not accu-
rately capture the nonlinear behavior of connections. In the all above
mentioned studies, the connections were modeled as single rotation-
al springs attached at beam ends and the stiffness matrix of beam
elements is modified to account for the stiffness of connections. The
mentioned studies are limited to planar semi-rigid steel frames, but
space frames are not analyzed.

In this paper, an independent zero-length connection element with
six different translational and rotational springs connecting two differ-
ent nodes with zero distance is developed. This is efficient because
modification of the beam–column stiffness matrix considering the
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semi-rigid connections is unnecessary and the connection is ready to
integrate any element types. The dynamic behavior of rotational springs
is captured through the independent hardening model employing
the well-known Kishi–Chen power model [9], the Richard–Abbott
four-parameter model [10], the Chen–Lui exponential model [11], and
the Ramberg–Osgoodmodel [12]. Rotational springswith constant stiff-
ness are used to model linear semi-rigid connections.

The second-order effects are considered by using stability func-
tions which Kim and Thai [16–18] have successfully employed for
the nonlinear inelastic analysis of steel structures subjected to static
and dynamic loadings. The Newmark numerical integration method
combined with the Newton–Raphson iterative algorithm is adopted
to solve the nonlinear motion equations at each incremental time
step. The results of the second-order elastic dynamic response are com-
paredwith those of previous studies and commercial SAP2000 software
[19] to demonstrate the accuracy and computational efficiency.

2. Element formulation

2.1. Nonlinear beam–column element

To capture the effect of axial force acting through the lateral dis-
placement of the beam–column element (P − δ effect), the stability
functions reported by Chen and Lui [20] are used to minimize the
modeling and solution time. Only one element per member is gener-
ally needed to accurately capture the P − δ effect. The material
nonlinearity including gradual yielding of a steel beam–column
member under axial force and bending moments is beyond the
scope of this study. The incremental force–displacement equation of
a space beam–column element can be expressed in accordance with
Kim and Thai [16]:
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where E and G are the elastic and shear modulus of material; A and L
are the area and length of beam–column element; J is the torsional
constant; In is the moment of inertia with respect to the n axes
(n = y,z); ΔP, ΔMyA, ΔMyB, ΔMzA, ΔMzB, and ΔT are the incremental
axial force, A and B end moments with respect to y and z axes, and
torsion respectively; Δδ, ΔθyA, ΔθyB, ΔθzA, ΔθzB, and Δϕ are the incre-
mental axial displacement, joint rotations, and angle of twist; S1n

and S2n are the stability functions with respect to the n axis; (n = y, z),
and are expressed as:

S1n ¼
knL sin knLð Þ− knLð Þ2 cos knLð Þ
2−2 cos knLð Þ−knL sin knLð Þ if Pb0

knLð Þ2 cosh knLð Þ−knL sinh knLð Þ
2−2 cosh knLð Þ−knL sinh knLð Þ if P > 0
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S2n ¼
knLð Þ2−knL sin knLð Þ

2−2 cos knLð Þ−knL sin knLð Þ if Pb0

knL sin knLð Þ− knLð Þ2
2−2 cosh knLð Þ þ knL sinh knLð Þ if P > 0
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where kn ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pj j=EIn

p
.

The element force–deformation relationship of Eq. (1) is expressed
in symbolic form as follows:

ΔFf g ¼ Ke½ � Δdf g ð3Þ

in which

ΔFf g ¼ ΔP ΔMyA ΔMyB ΔMzA ΔMzB ΔT
� �T ð4Þ

Δdf g ¼ Δδ ΔθyA ΔθyB ΔθzA ΔθzB Δϕ
� �T

: ð5Þ

The P–Δ effect is the influence of axial force P acting through the
relative transverse displacement of the member ends. This effect
can be considered by using the geometric stiffness matrix [Kg] as

Kg

h i
12�12

¼ Ks½ � − Ks½ �
− Ks½ �T Ks½ �

� �
ð6Þ

where

Ks½ � ¼

0 a −b 0 0 0
a c 0 0 0 0
−b 0 c 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
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and

a ¼ MzA þMzB

L2
; b

MyA þMyB

L2
; c ¼ P

L
: ð8Þ

The displacement of a beam–column element can be decomposed
into two parts: the element deformation and rigid displacement. The
element deformation increment {Δd} in Eq. (3) can be obtained from
the element incremental displacement {ΔD} as

Δdf g ¼ T½ �6�12 ΔDf g ð9Þ

Fig. 1. Spring element model with zero-length.
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