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Abstract

Harmony search method based optimum design algorithm is presented for the steel sway frames. The harmony search method is a numerical
optimization technique developed recently that imitates the musical performance process which takes place when a musician searches for a better
state of harmony. Jazz improvisation seeks to find musically pleasing harmony similar to the optimum design process which seeks to find the
optimum solution. The optimum design algorithm developed imposes the behavioral and performance constraints in accordance with BS5950.
The member grouping is allowed so that the same section can be adopted for each group. The combined strength constraints considered for a
beam–column take into account the lateral torsional buckling of the member. The algorithm presented selects the appropriate sections for beams
and columns of the steel frame from the list of 64 Universal Beam sections and 32 Universal Column sections of the British Code. This selection
is carried out so that the design limitations are satisfied and the weight of steel frame is the minimum. The number of design examples considered
to demonstrate the efficiency of the algorithm is presented.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Structural design optimization of steel frames generally
requires selection of steel sections for its beams and columns
from a discrete set of practically available steel section tables.
This selection should be carried out in such a way that the
steel frame has the minimum weight or cost while the behavior
and performance of the structure is within the limitations
described by the code of practice. Such problems fall into the
subject of discrete optimization in which finding the optimum
solution is a difficult task. Early optimum design algorithms
based on a wide range of powerful mathematical programming
methods have failed to satisfy the needs of practicing
engineers. One of the reasons for this was that most of the
mathematical programming techniques developed are based on
the assumption of continuous design variables while in reality
most of the structural optimization design variables are discrete
in nature. Although some mathematical programming based
methods have been developed for discrete optimum design
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problems they are not very efficient for obtaining the optimum
solution of the large size practical design problems [1,2].

In recent years, structural optimization witnessed the
emergence of novel and innovative design techniques. These
stochastic search techniques make use of the ideas taken from
nature and do not suffer the discrepancies of mathematical
programming based optimum design methods. The basic
idea behind these techniques is to simulate the natural
phenomena such as survival of the fittest, immune system,
swarm intelligence and the cooling process of molten metals
into a numerical algorithm. These methods are non-traditional
search and optimization methods and they are very suitable
and powerful in obtaining the solution of combinatorial
optimization problems [3–22]. They do not require the
derivatives of the objective function and constraints and they
use probabilistic transition rules not deterministic rules. A large
number of optimum structural design algorithms have been
developed in recent years which are based on these effective,
powerful and novel techniques [22–42].

One recent addition to these techniques is the harmony
search algorithm [41–47]. This approach is based on the
musical performance process that takes place when a musician
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searches for a better state of harmony. Jazz improvisation seeks
to find musically pleasing harmony similar to the optimum
design process which seeks to find optimum solution. The pitch
of each musical instrument determines the aesthetic quality,
just as the objective function value is determined by the set
of values assigned to each decision variable. In this study
optimum design algorithm based on harmony search method is
developed that determines the optimum sectional designations
of beams and columns of a steel frames from the Universal
Beam and Universal Column section list of the British Code
of BS5950 [48,49].

2. Discrete optimum design of steel frames to BS5950

The design of unbraced steel frames necessitates the
selection of steel sections for its columns and beams from
standard steel section tables so that the frame satisfies the
serviceability and strength requirements specified by the code
of practice while the economy is observed in the overall or
material cost of the frame. When the design constraints are
implemented from BS5950 [48] in the formulation of the
design problem the following discrete programming problem
is obtained.
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where Eq. (1a) defines the weight of the frame, mr is the unit
weight of the steel section selected from the standard steel
section table that is to be adopted for group r . tr is the total
number of members in group r and ng is the total number of
groups in the frame. ls is the length of member s which belongs
to group r .

Eq. (1b) represents the inter-storey drift of the multi-storey
frame. δ j and δ j−1 are lateral deflections of two adjacent storey
levels and h j is the storey height. ns is the total number
of storeys in the frame. Eq. (1c) defines the displacement
restrictions that may be required to include other than drift
constraints such as deflections in beams. nd is the total number
of restricted displacements in the frame. δ ju is the allowable
lateral displacement. BS5950 limits the horizontal deflection
of columns due to unfactored imposed load and wind loads to
height of column/300 in each storey of a building with more

than one storey. δiu is the upper bound on the deflection of
beams which is given as span/360 if they carry plaster or other
brittle finish.

Eq. (1d) defines the local capacity check for beam–columns.
Fk and Mxk are the applied axial load and moment about the
major axis at the critical region of member k respectively. Agk

is the gross cross sectional area, and py is the design strength
of the steel. Mcx is the moment capacity about the major axis.
nc is the total number of beam–columns in the frame.

Eq. (1e) represents the simplified approach for the overall
buckling check for beam–columns. m is the equivalent uniform
moment factor given in Table 18 of BS5950. Mbk is the
buckling resistance moment capacity for member k about its
major axis computed from clause 4.3.7 of the code. pck is
the compression strength obtained from the solution of the
quadratic Perry–Robertson formula given in Appendix C.1 of
BS5950. It is apparent that the computation of compressive
strength of a compression member requires its effective length.
This can be automated by using the Jackson and Moreland
monograph for frame buckling [50]. The relationship for the
effective length of a column in a swaying frame is given as:

(γ1γ2)(π/k)2 − 36
6(γ1 + γ2)

=
π/k

tan(π/k)
(3)

where k is the effective length factor and γ1 and γ2 are the
relative stiffness ratios for the compression member which are
given as:
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∑
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The subscripts c and b refer to the compressed and restraining
members respectively and the subscripts 1 and 2 refer to two
ends of the compression member under investigation. The
solution of the non-linear equation (3) for k results in the
effective length factor for the member under consideration. Eq.
(3) has the following form for non-swaying frames.
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Eq. (1f) is required to be imposed for each beam in the frame
to ensure that each beam has the adequate moment capacity
to resist the applied moment. It is assumed that slabs in the
building provide sufficient lateral restraint for the beams.

Eq. (1g) is included in the design problem to ensure that
the flange width of the beam section at each beam–column
connection of storey s should be less than or equal to the flange
width of column section.

Eqs. (1h) and (1i) are required to be included to make sure
that the depth and the mass per meter of column section at
storey s at each beam–column connection are less than or equal
to the width and mass of the column section at the lower storey
s − 1. nu is the total number of these constraints.
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