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a b s t r a c t

In this paper, a fiber beam–column element which considers both geometric and material nonlinearities
is presented. The geometric nonlinearities are captured using stability functions obtained from the
exact stability solution of a beam–column subjected to axial force and bending moments. The material
nonlinearities are included by tracing the uniaxial stress–strain relationship of each fiber on the cross
sections. The nonlinear equilibrium equations are solved using an incremental iterative scheme based on
the generalized displacement controlmethod. Using only one element permember in structuremodeling,
the nonlinear responses predicted by the proposed element comparewellwith those given by commercial
finite element packages and other available results. Numerical examples are presented to verify the
accuracy and efficiency of the proposed element.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In the past few decades, there have been numerous studies
to improve the accuracy of the beam–column element for the
nonlinear analysis of steel frames. In general, the nonlinear
response of steel frames can be predicted by using either the
finite element method or the beam–column approach. The finite
element approach is often based on a stiffness or displacement
formulation in which cubic and linear interpolation functions are
used for the transverse and axial displacements, respectively [1–5].
Since this method is based commonly on an assumed cubic
polynomial variation of transverse displacement along the element
length, it is unable to capture accurately the effect of axial force
acting through the lateral displacement of the element (P–δ
effect) when one element per member is used [6]. Hence, it
overestimates the strength of a member under significant axial
force. Although the accuracy of this method can be improved
by using several elements per member in the modeling, it is
generally recognized to be computationally intensive because of
a very refined discretisation of the structures. The beam–column
approach is based on the stability functionswhich are derived from
the exact stability function of a beam–column subjected to axial
force and bending moments [7–12]. This approach can capture
accurately the P–δ effect of a beam–columnmember by using only
one or two elements per member in the modeling, hence, to save
computational time.

In parallel with the above developments, different beam–
columnmodels have been proposed to represent inelastic material
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behavior. These models can be grouped into two categories:
lumped plasticity [9,10,13] model and distributed plasticity model
[5,14–18]. In the lumped plasticity model, the inelastic behavior
of material is assumed to be concentrated at point hinges that are
usually located at the ends of the member. The force–deformation
relation at these hinges is based on force resultants. The advantage
of this model is that it is simple in formulation as well as
implementation. However, the disadvantage of this model is that
the force–deformation relation at the hinges is not always available
and accurate for every section. In the distributed plasticity model,
the inelastic behavior of material is distributed along the member
length since the element behavior is monitored through numerical
integration of constitutive behavior at a finite number of control
sections. The nonlinear constitutive behavior at these sections
is derived using one of the following methods: (1) moment–
curvature relations; (2) force and deformation resultants; and
(3) uniaxial stress–strain relations of fibers on the cross sections.
Although fibermodel is themost computationally intensive among
others, it represents the inelastic behavior of material more
accurately and rationally than concentrated plasticity model.

This paper proposes a fiber beam–column element for the
nonlinear inelastic analysis of space steel frames. The spread of
plasticity over the cross section and along the member length is
captured by tracing the uniaxial stress–strain relations of each
fiber on the cross sections located at the selected integration
points along the member length. The Gauss–Lobatto integration
rule is adopted herein for evaluating numerically element stiffness
matrix instead of the classical Gauss integration rule because
it always includes the end sections of the integration field.
Since inelastic behavior in beam elements often concentrates at
the ends of the member, monitoring the end sections of the
element results in improved accuracy and numerical stability [19].
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Although the fiber model is included in DRAIN-3DX [20] and
OpenSees [21] programs to represent the material nonlinearity,
the geometric nonlinearity caused by the interaction between the
axial force and bending moments (P–δ effect) was not considered.
Therefore, these methods overestimate the strength of a member
subjected to significant axial force if only one or few elements
per member are used in the modeling. In this research, the
stability functions obtained from the closed-form solution of a
beam–column subjected to end forces are used to accurately
capture the P–δ effect. Numerical examples are presented to verify
the accuracy and efficiency of the proposed element in predicting
nonlinear inelastic response of space steel frames.

2. Element formulations

2.1. Geometric nonlinear P–δ effect

To capture the effect of axial force acting through the lateral
displacement of the beam–column element (P–δ effect), the
stability functions reported by Chen and Lui [22] are used to
minimize modeling and solution time. Generally only one element
per member is needed to accurately capture the P–δ effect. From
Kim et al. [10], the incremental force–displacement equation of
space beam–column element which accounts for transverse shear
deformation effects can be expressed as


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where ∆P, ∆MyA, ∆MyB, ∆MzA, ∆MzB, and ∆T are incremental
axial force, end moments with respect to y and z axes, and
torsion respectively; ∆δ, ∆θyA, ∆θyB, ∆θzA, ∆θzB, and ∆φ are the
incremental axial displacement, joint rotations, and angle of twist;
C1y, C2y, C1z , and C2z are bending stiffness coefficients accounting
for the transverse shear deformation effects, and are expressed as

C1y =
k21y − k22y + k1yAszGL

2k1y + 2k2y + AszGL
(2a)

C2y =
−k21y + k22y + k2yAszGL

2k1y + 2k2y + AszGL
(2b)

C1z =
k21z − k22z + k1zAsyGL
2k1z + 2k2z + AsyGL

(2c)

C2z =
−k21z + k22z + k2yAsyGL
2k1z + 2k2z + AsyGL

(2d)

where k1n = S1n(EIn/L) and k2n = S2n(EIn/L); S1n and S2n are
stability functions with respect to n axis (n = y, z), and are
expressed as

S1n =


knL sin(knL) − (knL)2 cos(knL)
2 − 2 cos(knL) − knL sin(knL)
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(3a)

S2n =
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(knL)2 − knL sin(knL)
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(3b)

where k2n = |P|/EIn. EA, EIn, and GJ denote the axial, bending and
torsional stiffness of the beam–column element, and are defined as
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in which h is the total number of monitored sections along an
element; m is the total number of fibers divided on the monitored
cross section; wj is the weighting factor of the jth section; Ei and Ai
are the tangent modulus of the material and the area of ith fiber,
respectively; yi and zi are the coordinates of ith fiber in the cross
section. The element force–deformation relationship of Eq. (1) can
be expressed in symbolic form as

{∆F} = [Ke]{∆d} (8)

where

{∆F} =

∆P ∆MyA ∆MyB ∆MzA ∆MzB ∆T

T (9)

{∆d} =

∆δ ∆θyA ∆θyB ∆θzA ∆θzB ∆φ

T
. (10)

The element stiffness matrix is evaluated numerically by the
Gauss–Lobatto integration scheme since this method allows for
two integration points to coincide with the end sections of the
elements [23]. Since inelastic behavior in beam elements often
concentrates at the ends of the member, the monitoring of the
end sections of the element is advantageous from the standpoint
of accuracy and numerical stability. By contrast, the outermost
integration points of the classical Gauss integration method only
approach the end sections with increasing order of integration,
but never coincide with the end sections and, hence, result in
overestimation of the member strength [24].

2.2. Material nonlinear effect

In order to capture the gradual plastification throughout the
member’s cross section, a fiber model as shown in Fig. 1 is used.
The fiber beam–column element is divided into a discrete number
of monitored sections represented by the integration points. Each
monitored section is divided into m fibers and each fiber is
represented by its area Ai and coordinate location corresponding to
its centroid (yi, zi). Section deformations are represented by three
strain resultants: the axial strain ε along the longitudinal axis and
two curvaturesχz andχy with respect to z and y axes, respectively.
The corresponding force resultants are the axial force N and two
bendingmomentsMz andMy. The section forces and deformations
are grouped in the following vectors:

Section force vector {Q } =

Mz My N

T (11)

Section deformation vector {q} =

χz χy ε

T
. (12)
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